[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fault-aware flow control and multi-path routing in VANETs

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Built upon the fragile mobile devices and shared wireless channels, Vehicular Ad-Hoc Networks (VANETs) are vulnerable to misbehaving nodes. The critical problems that affect the serviceability of the entire network are maintaining an acceptable level of network performance degradation, and fair allocation of resource among different users in the presence of misbehaving nodes. This paper investigates the optimization problem via the joint design of rate control and multi-path routing in fault-aware VANETs. We use statistical information and estimation on each wireless link to characterize the effect of faults, and develop a leaky-path model. This model takes account of packet loss along fault-paths and the “shrinking” feature of effective flow at the destination node. Moreover, we use a cost function to measure the impact of fault-correlation among multi-routing paths on effective flows. Based on the leaky-path model and the cost function, a fault-correlated flow control and routing ((FC)2 R) approach is proposed to maximize the network utility associated with the effective rate. We design a novel distributed algorithm to adjust flow rates adaptively on each path, using multi-path routing. Our simulation results demonstrate that higher effective network throughput, and better fairness, can be achieved by our algorithm than the standard optimal flow control in the presence of misbehaving nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arrow KJ (1958) Studies in linear and nonlinear programming. Standford University Press, Uzawa H

  2. Bari A, Jaekel A, Jiang J, Xu Y (2012) Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements. Comput Commun 35(3):320–333

    Article  Google Scholar 

  3. Challal Y, Ouadjaout A, Lasla N, Bagaa M, Hadjidj A (2011) Secure and efficient disjoint multipath construction for fault tolerant routing in wireless sensor networks. J Netw Comput Appl 34(4):1380–1397

    Article  Google Scholar 

  4. Chen L, Leneutre J (2009) On multipath routing in multihop wireless networks: security, performance, and their tradeoff. EURASIP J Wirel Commun Netw. 2009

  5. Du S, Li X, Du J, Zhu H (2012) An attack-and-defence game for security assessment in vehicular ad hoc networks. Peer-to-Peer Networking and Applications

  6. Eiza MH, Ni Q, Owens T, Min G (2013) Investigation of routing reliability of vehicular ad hoc networks. EURASIP J Wirel Commun Netw:2013

  7. Farnoud F, Valaee S (2009) Reliable broadcast of safety messages in vehicular Ad hoc networks. In: IEEE INFOCOM, pp 226–234

  8. Gerla M, Kleinrock L (2011) Vehicular networks and the future of the mobile internet. Comput Netw 55(2):457–469

    Article  Google Scholar 

  9. Gohari AA, Pakbaz R, Melliar-Smith PM, Moser LE, Rodoplu V (2011) RMR: Reliability map routing for tactical mobile ad hoc networks. IEEE J Sel Areas Commun 29(10):1935–1947

    Article  Google Scholar 

  10. Gupta P, Kumar PR (2000) The capacity of wireless networks. IEEE Trans Inform Theory 46(2):388–404

    Article  MathSciNet  MATH  Google Scholar 

  11. He R, Rutagemwa H, Shen X (2008) Differentiated reliable routing in hybrid vehicular ad-hoc networks. In: IEEE ICC, pp 2353–2358

  12. Hosseinabadi G, Vaidya N (2010) Selfish misbehavior in the optimal cross-layered rate control of wireless networks. Technical Report, CRHC, University of Illinois at Urbana-Champaign. http://www.crhc.illinois.edu/wireless/papers/tech-report-Ghazale-SelfishCrossLayered-March.pdf

  13. Huang X, Fang Y (2009) Performance study of node-disjoint multipath routing in vehicular ad hoc networks. IEEE Trans Veh Technol 58(4):1942–1950

    Article  MathSciNet  Google Scholar 

  14. Jain R (1984) A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Techical Report, Hawe W

  15. Jin J, Palaniswami M, Krishnamachari B (2012) Rate control for heterogeneous wireless sensor networks: Characterization, algorithm and performance. Comput Netw 56(2012):3783–3794

    Article  Google Scholar 

  16. Karagiannis G, Altintas O, Ekici E et al (2011) Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun Surv Tutorials 13(4):584–616

    Article  Google Scholar 

  17. Kelly FP (1997) Charging and rate control for elastic traffic. European Trans Telecommun 8:33–37

    Article  Google Scholar 

  18. Kelly FP, Maulloo A, Tan D (1998) Rate control for communication networks: Shadow prices, proportional fairness and stability. J Oper Res Soc 49(3):237–252

    Article  MATH  Google Scholar 

  19. Koksal CE, Balakrishnan H (2006) Quality-aware routing metrics for time-varying wireless mesh networks. IEEE J Sel Areas Commun 24(11):1984–1994

    Article  Google Scholar 

  20. Li X, Cuthbert L (2004) On-demand node-disjoint multipath routing in wireless ad hoc networks. In: IEEE LCN, pp 419–420

  21. Lee J, Chiang M, Calderbank AR (2007) Utility-optimal random-access control. IEEE Trans on Wireless Commun 6(7):2741– 2751

    Article  Google Scholar 

  22. Mo J, Walrand J (2000) Fair end-to-end window-based congestion control. IEEE/ACM Trans Netw 8(5):556–567

    Article  Google Scholar 

  23. Ng D WK, Lo ES, Schober R (2011) Secure resource allocation and scheduling for OFDMA decode-and-forward relay networks. IEEE Trans Wireless Commun 10(10):3528–3540

    Article  Google Scholar 

  24. Ohara Y, Imahori S, Meter RV (2009) SMARA: Maximum alternative routing algorithm. In: IEEE INFOCOM, pp 298–306

  25. Park SJ, Vedantham R, Sivakumar R, Akyildiz IF (2004) A scalable approach for reliable downstream data delivery in wireless networks. In: MobiHoc, pp 78–89

  26. Rao L, Liu X, Kang K-D, Liu W, Liu L, Chen Y (2011) Optimal joint multi-path routing and sampling rates assignment for real-time wireless sensor networks. In: IEEE ICC, pp 1–5

  27. Rivas DA, Barcelo-Ordinas JM, Zapata MG, Morillo-Pozo JD (2011) Security on VANETs: Privacy, misbehaving nodes, false information and secure data aggregation. J Netw Comput Appl 34(6):1942–1955

    Article  Google Scholar 

  28. Rockafellar R, Wets R (1998) Variational analysis. Springer

  29. Saad M, Leon-Garcia A, Yu W (2007) Optimal network rate allocation under end-to-end quality-of-service requirements. IEEE Trans Netw Serv Manag 4(3):40–49

    Article  Google Scholar 

  30. Su H, Zhang X (2007) Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad hoc networks. IEEE Trans Veh Technol 56(6):3309–3323

    Article  Google Scholar 

  31. Subramanian VG, Duffy KR, Leith DJ (2009) Existence and uniqueness of fair rate allocations in lossy wireless networks. IEEE Trans on Wireless Commun 8(7):3401–3406

    Article  Google Scholar 

  32. Sun J, Fang Y (2009) Defense against misbehavior in anonymous vehicular ad hoc networks. Ad Hoc Netw 7(8):1515–1525

    Article  MathSciNet  Google Scholar 

  33. Wang W, Palaniswami M, Low SH (2003) Optimal flow control and routing in multi-path networks. Perform Eval 52(2-3):119–132

    Article  Google Scholar 

  34. Xue Y, Li B, Nahrstedt K (2006) Optimal resource allocation in wireless ad hoc networks: A price-based approach. IEEE Trans Mob Comput 5(4):347–364

    Article  Google Scholar 

  35. Yan G, Olariu S, Weigle MC (2012) Providing location security in vehicular Ad Hoc networks. IEEE Wirel Commun 16(6):48–55

    Article  Google Scholar 

  36. Yang K, Ou S, Chen H, He J (2007) A multihop peer-communication protocol with fairness guarantee for IEEE 802.16-based vehicular networks. IEEE Trans Veh Technol 56(6):3358–3370

    Article  Google Scholar 

  37. Yang Y, Zhong C, Sun Y, Yang J (2010) Network coding based reliable disjoint and braided multipath routing for sensor networks. J Netw Comput Appl 33(4):422–432

    Article  Google Scholar 

  38. Zeadally S, Hunt R, Chen Y, Irwin A, Hassan A (2012) Vehicular ad hoc networks (VANETS): status, results, and challenges. Telecommun Syst 50(4):217–241

    Article  Google Scholar 

  39. Zhang X, Dong X, Wu J, Li X, Xiong N (2013) Fault-aware flow control and multi-path routing in wireless sensor networks. In: IEEE ICDCSW, pp 27–32

  40. Zhou L, Zhang Y, Song K, Jing W, Vasilakos AV (2011) Distributed media services in P2P-based vehicular networks. IEEE Trans Veh Technol 60(2):692–703

    Article  Google Scholar 

  41. Zhou L, Zheng B, Geller B, Wei A, Xu S, Li Y (2008) Cross-layer rate control, medium access control and routing design in cooperative in VANET. Comput Commun 31(12):2870–2882

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61373154), the National Natural Science Foundation of China (Grant No. 61033014), theNational Fundamental Research Development Program of China (973) (Grant No. 2012CB723401), and the National Natural Science Foundation of China (Grant No. 61371083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Dong, X., Xiong, N. et al. Fault-aware flow control and multi-path routing in VANETs. Peer-to-Peer Netw. Appl. 8, 1090–1107 (2015). https://doi.org/10.1007/s12083-014-0302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-014-0302-2

Keywords

Navigation