[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Antifibrotics in liver disease: are we getting closer to clinical use?

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

A Correction to this article was published on 15 January 2019

This article has been updated

Abstract

The process of wound healing in response to chronic liver injury leads to the development of liver fibrosis. Regardless of etiology, the profound impact of the degree of liver fibrosis on the prognosis of chronic liver diseases has been well demonstrated. While disease-specific therapy, such as treatments for viral hepatitis, has been shown to reverse liver fibrosis and cirrhosis in both clinical trials and real-life practice, subsets of patients do not demonstrate fibrosis regression. Moreover, where disease-specific therapies are not available, the need for antifibrotics exists. Increased understanding into the pathogenesis of liver fibrosis sets the stage to focus on antifibrotic therapies attempting to: (1) Minimize liver injury and inflammation; (2) Inhibit liver fibrogenesis by enhancing or inhibiting target receptor–ligand interactions or intracellular signaling pathways; and (3) Promote fibrosis resolution. While no antifibrotic therapies are currently available, a number are now being evaluated in clinical trials, and their use is becoming closer to reality for select subsets of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 30 January 2019

    The original article can be found online.

References

  1. Iwaisako K, Jiang CY, Zhang MJ, Cong M, Moore-Morris TJ, Park TJ, et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci USA 2014;111(32):E3297–E3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013;4:2823

    Article  CAS  PubMed  Google Scholar 

  3. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008;88(1):125–172

    Article  CAS  PubMed  Google Scholar 

  4. Fiorucci S, Antonelli E, Rizzo G, Renga B, Mencarelli A, Riccardi L, et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 2004;127(5):1497–1512

    Article  CAS  PubMed  Google Scholar 

  5. Zhao G, Cui J, Qin Q, Zhang J, Liu L, Deng S, et al. Mechanical stiffness of liver tissues in relation to integrin beta1 expression may influence the development of hepatic cirrhosis and hepatocellular carcinoma. J Surg Oncol 2010;102(5):482–489

    Article  CAS  PubMed  Google Scholar 

  6. Zhu J, Clark RAF. Fibronectin at select sites binds multiple growth factors and enhances their activity: expansion of the collaborative ECM-GF paradigm. J Invest Dermatol 2014;134(4):895–901

    Article  CAS  PubMed  Google Scholar 

  7. Ikenaga N, Peng ZW, Vaid KA, Liu SB, Yoshida S, Sverdlov DY, et al. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut 2017;66(9):1697–1708

    Article  CAS  PubMed  Google Scholar 

  8. Vadasz Z, Kessler O, Akiri G, Gengrinovitch S, Kagan HM, Baruch Y, et al. Abnormal deposition of collagen around hepatocytes in Wilson’s disease is associated with hepatocyte specific expression of lysyl oxidase and lysyl oxidase like protein-2. J Hepatol 2005;43(3):499–507

    Article  CAS  PubMed  Google Scholar 

  9. Seki E, De Minicis S, Inokuchi S, Taura K, Miyai K, Van Rooijen N, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 2009;50(1):185–197 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  10. Appay V, Rowland-Jones SL. RANTES: a versatile and controversial chemokine. Trends Immunol 2001;22(2):83–87

    Article  CAS  PubMed  Google Scholar 

  11. Schwabe RF, Bataller R, Brenner DA. Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol 2003;285(5):G949–G958

    Article  CAS  PubMed  Google Scholar 

  12. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006;130(2):435–452

    Article  CAS  PubMed  Google Scholar 

  13. Melhem A, Muhanna N, Bishara A, Alvarez CE, Ilan Y, Bishara T, et al. Antifibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol 2006;45(1):60–71

    Article  CAS  PubMed  Google Scholar 

  14. Inagaki Y, Okazaki I. Emerging insights into transforming growth factor beta smad signal in hepatic fibrogenesis. Gut 2007;56(2):284–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1. J Hepatol 1999;30(1):48–60

    Article  CAS  PubMed  Google Scholar 

  16. Uemura M, Swenson ES, Gaca MDA, Giordano FJ, Reiss M, Wells RG. Smad2 and smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization. Mol Biol Cell 2005;16(9):4214–4224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mishra R, Zhu L, Eckert RL, Simonson MS. TGF-beta-regulated collagen type I accumulation: role of Src-based signals. Am J Physiol Cell Physiol 2007;292(4):C1361–C1369

    Article  CAS  PubMed  Google Scholar 

  18. Provenzano PP, Keely PJ. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 2011;124(Pt 8):1195–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Henderson NC, Sheppard D. Integrin-mediated regulation of TGFbeta in fibrosis. Biochem Biophys Acta 2013;1832(7):891–896

    CAS  PubMed  Google Scholar 

  20. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 2013;19(12):1617–1624

    Article  CAS  PubMed  Google Scholar 

  21. Granzow M, Schierwagen R, Klein S, Kowallick B, Huss S, Linhart M, et al. Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology 2014;60(1):334–348 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  22. Ebrahimkhani MR, Oakley F, Murphy LB, Mann J, Moles A, Perugorria MJ, et al. Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease. Nat Med 2011;17(12):1668–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007;13(11):1324–1332

    Article  CAS  PubMed  Google Scholar 

  24. Li YS, Ni SY, Meng Y, Shi XL, Zhao XW, Luo HH, et al. Angiotensin II facilitates fibrogenic effect of TGF-beta1 through enhancing the down-regulation of BAMBI caused by LPS: a new pro-fibrotic mechanism of angiotensin II. PLoS One 2013;8(10):e76289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gabele E, Muhlbauer M, Dorn C, Weiss TS, Froh M, Schnabl B, et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem Biophys Res Commun 2008;376(2):271–276

    Article  CAS  PubMed  Google Scholar 

  26. Saxena NK, Anania FA. Adipocytokines and hepatic fibrosis. Trends Endocrinol Metab 2015;26(3):153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cabrero A, Cubero M, Llaverias G, Alegret M, Sanchez R, Laguna JC, et al. Leptin down-regulates peroxisome proliferator-activated receptor gamma (PPAR-gamma) mRNA levels in primary human monocyte-derived macrophages. Mol Cell Biochem 2005;275(1–2):173–179

    Article  CAS  PubMed  Google Scholar 

  28. Zhai XG, Yan KF, Fan JY, Niu MH, Zhou Q, Zhou Y, et al. The beta-catenin pathway contributes to the effects of leptin on SREBP-1c expression in rat hepatic stellate cells and liver fibrosis. Br J Pharmacol 2013;169(1):197–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong Z, Su L, Esmaili S, Iseli TJ, Ramezani-Moghadam M, Hu L, et al. Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells. J Mol Med (Berl) 2015;93(12):1327–1339

    Article  CAS  Google Scholar 

  30. Ramezani-Moghadam M, Wang J, Ho V, Iseli TJ, Alzahrani B, Xu A, et al. Adiponectin reduces hepatic stellate cell migration by promoting tissue inhibitor of metalloproteinase-1 (TIMP-1) secretion. J Biol Chem 2015;290(9):5533–5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA. The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am J Pathol 2005;166(6):1655–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saxena NK, Anania FA. Adipocytokines and hepatic fibrosis. Trends Endocrinol Metab 2015;26(3):153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li JA, Kuruba R, Wilson A, Gao XA, Zhang YF, Li S. Inhibition of endothelin-1-mediated contraction of hepatic stellate cells by FXR ligand. PloS One 2010;5(11):e13955. https://doi.org/10.1371/journal.pone.0013955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schwabl P, Hambruch E, Seeland BA, Hayden H, Wagner M, Garnys L, et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J Hepatol 2017;66(4):724–733

    Article  CAS  PubMed  Google Scholar 

  35. Beaven SW, Wroblewski K, Wang JH, Hong C, Bensinger S, Tsukamoto H, et al. Liver X receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology 2011;140(3):1052–1062

    Article  CAS  PubMed  Google Scholar 

  36. Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 2013;153(3):601–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hisamori S, Tabata C, Kadokawa Y, Okoshi K, Tabata R, Mori A, et al. All-trans-retinoic acid ameliorates carbon tetrachloride-induced liver fibrosis in mice through modulating cytokine production. Liver Int 2008;28(9):1217–1225

    Article  CAS  PubMed  Google Scholar 

  38. Li T, Eheim AL, Klein S, Uschner FE, Smith AC, Brandon-Warner E, et al. Novel role of nuclear receptor Rev-erbalpha in hepatic stellate cell activation: potential therapeutic target for liver injury. Hepatology 2014;59(6):2383–2396 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  39. Bian EB, Huang C, Wang H, Wu BM, Zhang L, Lv XW, et al. DNA methylation: new therapeutic implications for hepatic fibrosis. Cell Signal 2013;25(1):355–358

    Article  CAS  PubMed  Google Scholar 

  40. Tsukamoto H, Zhu NL, Asahina K, Mann DA, Mann J. Epigenetic cell fate regulation of hepatic stellate cells. Hepatol Res 2011;41(7):675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zeybel M, Hardy T, Wong YK, Mathers JC, Fox CR, Gackowska A, et al. Multigenerational epigenetic adaptation of the hepatic wound-healing. Nat Med 2012;18(10):1369–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kitano M, Bloomston PM. Hepatic stellate cells and microRNAs in pathogenesis of liver fibrosis. J Clin Med 2016;5(3):E38. https://doi.org/10.3390/jcm5030038

    Article  CAS  PubMed  Google Scholar 

  43. Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodriguez HM, Oyasu M, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 2010;16(9):1009

    Article  CAS  PubMed  Google Scholar 

  44. Oakley F, Meso M, Iredale JP, Green K, Marek CJ, Zhou X, et al. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis. Gastroenterology 2005;128(1):108–120

    Article  CAS  PubMed  Google Scholar 

  45. Anan A, Baskin-Bey ES, Bronk SF, Werneburg NW, Shah VH, Gores GJ. Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology 2006;43(2):335–344 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  46. Taimr P, Higuchi H, Kocova E, Rippe RA, Friedman S, Gores GJ. Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology 2003;37(1):87–95 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  47. Siegmund SV, Uchinami H, Osawa Y, Brenner DA, Schwabe RF. Anandamide induces necrosis in primary hepatic stellate cells. Hepatology 2005;41(5):1085–1095 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  48. Jeong WI, Park O, Radaeva S, Gao B. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 2006;44(6):1441–1451 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  49. Chen YP, Choi SS, Michelotti GA, Chan IS, Swiderska-Syn M, Karaca GF, et al. Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology 2012;143(5):1319–1329

    Article  CAS  PubMed  Google Scholar 

  50. Panebianco C, Oben JA, Vinciguerra M, Pazienza V. Senescence in hepatic stellate cells as a mechanism of liver fibrosis reversal: a putative synergy between retinoic acid and PPAR-gamma signalings. Clin Exp Med 2017;17(3):269–280

    Article  CAS  PubMed  Google Scholar 

  51. Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu XR, Hsu CC, et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 2012;143(4):1073–1083

    Article  CAS  PubMed  Google Scholar 

  52. Song GQ, Pacher M, Balakrishnan A, Yuan QG, Tsay HC, Yang DK, et al. Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 2016;18(6):797–808

    Article  CAS  PubMed  Google Scholar 

  53. Knop V, Hoppe D, Welzel T, Vermehren J, Herrmann E, Vermehren A, et al. Regression of fibrosis and portal hypertension in HCV-associated cirrhosis and sustained virologic response after interferon-free antiviral therapy. J Viral Hepat 2016;23(12):994–1002

    Article  CAS  PubMed  Google Scholar 

  54. Bachofner JA, Valli PV, Kroger A, Bergamin I, Kunzler P, Baserga A, et al. Direct antiviral agent treatment of chronic hepatitis C results in rapid regression of transient elastography and fibrosis markers fibrosis-4 score and aspartate aminotransferase-platelet ratio index. Liver Int 2017;37(3):369–376

    Article  CAS  PubMed  Google Scholar 

  55. Hadziyannis SJ, Tassopoulos NC, Heathcote EJ, Chang TT, Kitis G, Rizzetto M, et al. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B for up to 5 years. Gastroenterology 2006;131(6):1743–1751

    Article  CAS  PubMed  Google Scholar 

  56. Chang TT, Liaw YF, Wu SS, Schiff E, Han KH, Lai CL, et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 2010;52(3):886–893 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  57. Lassailly G, Caiazzo R, Buob D, Pigeyre M, Verkindt H, Labreuche J, et al. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology 2015;149(2):379–388

    Article  PubMed  Google Scholar 

  58. Traber PG, Chou H, Zomer E, Hong F, Klyosov A, Fiel MI, et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One 2013;8(10):e75361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Budas G, Karnik S, Jonnson T, Shafizadeh T, Watkins S, Breckenridge D, et al. Reduction of liver steatosis and fibrosis with an ask1 inhibitor in a murine model of nash is accompanied by improvements in cholesterol, bile acid and lipid metabolism. J Hepatol 2016;64(2):S170

    Article  Google Scholar 

  60. Loomba R, Lawitz E, Mantry PS, Jayakumar S, Caldwell SH, Arnold H, et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 2018;67(2):549–559 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  61. Lefebvre E, Moyle G, Reshef R, Richman LP, Thompson M, Hong F, et al. Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PloS One 2016;11(6):e0158156. https://doi.org/10.1371/journal.pone.0158156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria J, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 2017;67(5):1754–1767 (Baltimore, Md)

    Article  CAS  Google Scholar 

  63. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010;362(18):1675–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kessoku T, Imajo K, Honda Y, Kato T, Ogawa Y, Tomeno W, et al. Resveratrol ameliorates fibrosis and inflammation in a mouse model of nonalcoholic steatohepatitis. Sci Rep UK 2016;6:22251. https://doi.org/10.1038/srep22251

    Article  CAS  Google Scholar 

  65. Wu L, Zhang Q, Mo W, Feng J, Li S, Li J, et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-beta1/Smads and PI3 K/Akt pathways. Sci Rep 2017;7(1):9289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cai ZB, Lou Q, Wang FG, Li E, Sun JJ, Fang HY, et al. N-acetylcysteine protects against liver injure induced by carbon tetrachloride via activation of the Nrf2/HO-1 pathway. Int J Clin Exp Pathol 2015;8(7):8655–8662

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rambaldi A, Jacobs BP, Gluud C. Milk thistle for alcoholic and/or hepatitis B or C virus liver diseases. Cochrane Database Syst Rev 2007;(4):Cd003620. https://doi.org/10.1002/14651858.CD003620.pub3

  68. Garcia-Tsao G, Fallon MB, Reddy KR, Loo N, Bari K, Augustin S, et al. Placebo-controlled, randomized, pilot study of the effect of sorafenib on portal pressure in patients with cirrhosis, portal hypertension and ablated hepatocellular carcinoma (HCC). Hepatology 2015;62:580a–581a (Baltimore, Md)

    Google Scholar 

  69. Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 2016;375(7):631–643

    Article  CAS  PubMed  Google Scholar 

  70. Osterreicher CH, Taura K, De Minicis S, Seki E, Penz-Osterreicher M, Kodama Y, et al. Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology 2009;50(3):929–938 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  71. Yokohama S, Yoneda M, Haneda M, Okamoto S, Okada M, Aso K, et al. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 2004;40(5):1222–1225 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  72. Georgescu EF, Ionescu R, Niculescu M, Mogoanta L, Vancica L. Angiotensin-receptor blockers as therapy for mild-to-moderate hypertension-associated non-alcoholic steatohepatitis. World J Gastroenterol 2009;15(8):942–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci USA 1999;96(22):12719–12724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Friedman SL. Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 2004;1(2):98–105

    Article  PubMed  Google Scholar 

  75. Okuno M, Akita K, Moriwaki H, Kawada N, Ikeda K, Kaneda K, et al. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-beta. Gastroenterology 2001;120(7):1784–1800

    Article  CAS  PubMed  Google Scholar 

  76. Patsenker E, Popov Y, Stickel F, Jonczyk A, Goodman SL, Schuppan D. Inhibition of integrin alphavbeta6 on cholangiocytes blocks transforming growth factor-beta activation and retards biliary fibrosis progression. Gastroenterology 2008;135(2):660–670

    Article  CAS  PubMed  Google Scholar 

  77. Madala SK, Korfhagen TR, Schmidt S, Davidson C, Edukulla R, Ikegami M, et al. Inhibition of the alphavbeta6 integrin leads to limited alteration of TGF-alpha-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2014;306(8):L726–L735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rockey DC, Chung JJ. Endothelin antagonism in experimental hepatic fibrosis. Implications for endothelin in the pathogenesis of wound healing. J Clin Invest 1996;98(6):1381–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Grimminger F, Schermuly RT, Ghofrani HA. Targeting non-malignant disorders with tyrosine kinase inhibitors. Nat Rev Drug Discov 2010;9(12):956–970

    Article  CAS  PubMed  Google Scholar 

  80. Coriat R, Gouya H, Mir O, Ropert S, Vignaux O, Chaussade S, et al. Reversible decrease of portal venous flow in cirrhotic patients: a positive side effect of sorafenib. PloS One 2011;6(2):e16978. https://doi.org/10.1371/journal.pone.0016978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fuchs BC, Hoshida Y, Fujii T, Wei L, Yamada S, Lauwers GY, et al. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology 2014;59(4):1577–1590 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  82. Murata T, Arii S, Nakamura T, Mori A, Kaido T, Furuyama H, et al. Inhibitory effect of Y-27632, a ROCK inhibitor, on progression of rat liver fibrosis in association with inactivation of hepatic stellate cells. J Hepatol 2001;35(4):474–481

    Article  CAS  PubMed  Google Scholar 

  83. Hennenberg M, Biecker E, Trebicka J, Jochem K, Zhou Q, Schmidt M, et al. Defective RhoA/Rho-kinase signaling contributes to vascular hypocontractility and vasodilation in cirrhotic rats. Gastroenterology 2006;130(3):838–854

    Article  CAS  PubMed  Google Scholar 

  84. Fukuda T, Narahara Y, Kanazawa H, Matsushita Y, Kidokoro H, Itokawa N, et al. Effects of fasudil on the portal and systemic hemodynamics of patients with cirrhosis. J Gastroen Hepatol 2014;29(2):325–329

    Article  CAS  Google Scholar 

  85. Meissner EG, McLaughlin M, Matthews L, Gharib AM, Wood BJ, Levy E, et al. Simtuzumab treatment of advanced liver fibrosis in HIV and HCV-infected adults: results of a 6-month open-label safety trial. Liver Int 2016;36(12):1783–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oh YM, Park O, Swierczewska M, Hamilton JP, Park JS, Kim TH, et al. Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology 2016;64(1):209–223 (Baltimore, Md)

    Article  CAS  PubMed  Google Scholar 

  87. Sato Y, Murase K, Kato J, Kobune M, Sato T, Kawano Y, et al. Resolution of liver cirrhosis using vitamin a-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat Biotechnol 2008;26(4):431–442

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meena B. Bansal.

Ethics declarations

Conflict of interest

Dr. Meena B. Bansal and Dr. Naichaya Chamroonkul have no potential conflict of interest.

Research involving human participants and/or animals

This review article is not a part of any research that involves human participants and/or animals.

Informed consent

There is no informed consent needed in this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, M.B., Chamroonkul, N. Antifibrotics in liver disease: are we getting closer to clinical use?. Hepatol Int 13, 25–39 (2019). https://doi.org/10.1007/s12072-018-9897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-018-9897-3

Keywords

Navigation