[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SOS 2.0: an evolutionary approach for SOS algorithm

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

With the shortcomings on the solution given for most-recent optimization problems, decision-makers from different fields yearn the existence of tenacious breakthrough. In fact, they all shared the same obligation to optimize work efficiency, whether to minimize cost, consumption or to maximize the profit acquirement. Metaheuristic search is the more-advanced method proven to be useful for difficult optimization tasks. Moreover, development records also signalized rapid development of these algorithms, contributing several notable and powerful optimization algorithms. Among them, Symbiotic Organisms Search (SOS) received noticeable attention due to its simplicity and also its parameter-less nature. Nonetheless, several considerable issues are still challenging for further development. For instance, local optima and premature convergence issues found from any improper and inefficiency computational procedure on higher dimensional problems. Also, exploitation and exploration trade-off is another essential issue involving stability for optimal performance. In that case, this work proposed a new evolutionary approach named SOS 2.0. There are two distinct features associated with the evolution: Self-Parameter-Updating (SPU) technique and chaotic maps sequencing. Both features are integrated for a better balance of exploration and exploitation in which SPU focuses on exploration and chaotic map focuses on exploitation instead. This work also applied benchmarks function tests and engineering design optimization problem in advance for validation purpose of the performance. The experimental results showed that SOS 2.0 delivers not only better performance from its predecessor and also several recent SOS modifications which can be concluded as one successive approach for better SOS algorithm, but also enhances the computation efficiency and capability of searching optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Koziel S, Yang XS (2011) Computational optimization, methods and algorithms. Springer, Berlin, Heidelberg. ISBN 978-3-642-20859-1

    Book  Google Scholar 

  2. Michalewicz Z (1996) Evolution programs, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  3. Gendreau M, Potvin J-Y (2019) Handbook of metaheuristics, 3rd edn. Springer Nature Switzerland AG, Berlin

    Book  Google Scholar 

  4. Smonou D, Kampouridis M, Tsang E (2013) Metaheuristics application on a financial forecasting problem. IEEE Congr Evol Comput CEC 2013:1021–1028. https://doi.org/10.1109/CEC.2013.6557679

    Article  Google Scholar 

  5. Gherbi YA, Bouzeboudja H, Gherbi FZ (2016) The combined economic environmental dispatch using new hybrid metaheuristic. Energy 115:468–477. https://doi.org/10.1016/j.energy.2016.08.079

    Article  Google Scholar 

  6. Sicilia JA, Quemada C, Royo B, Escuín D (2016) An optimization algorithm for solving the rich vehicle routing problem based on Variable Neighborhood Search and Tabu Search metaheuristics. J Comput Appl Math 291:468–477. https://doi.org/10.1016/j.cam.2015.03.050

    Article  MathSciNet  MATH  Google Scholar 

  7. Zamani MKM, Musirin I, Suliman SI, Bouktir T (2017) Chaos embedded Symbiotic Organisms Search technique for optimal FACTS device allocation for voltage profile and security improvement. Indones J Electr Eng Comput Sci 8:146–153. https://doi.org/10.11591/ijeecs.v8.i1.pp146-153

    Article  Google Scholar 

  8. Abdullahi M (2017) Optimized task scheduling based on hybrid Symbiotic Organisms Search algorithms for cloud computing environment. PhD thesis. Universiti Teknologi Malaysia. http://dms.library.utm.my:8080/vital/access/manage

  9. Tran DH, Cheng MY, Prayogo D (2016) A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time-cost-labor utilization tradeoff problem. Knowl Based Syst 94:132–145. https://doi.org/10.1016/j.knosys.2015.11.016

    Article  Google Scholar 

  10. Eberheart R, Kennedy J (1995) A new optimizer using partical swarm theory. In: Proceedings of sixth international symposium, pp 39–43

  11. Elbes M, Alzubi S, Kanan T, Al-Fuqaha A, Hawashin B (2019) A survey on particle swarm optimization with emphasis on engineering and network applications. Evolut Intell 12:113–129. https://doi.org/10.1007/s12065-019-00210-z

    Article  Google Scholar 

  12. Dorigo M, Di Caro G (1999) Ant Colony Optimization: a new meta-heuristic. Evol Comput 2:1470–1477

    Google Scholar 

  13. Teodorović D, Dell’orco M (2015) Bee colony optimization—a cooperative learning approach to complex transportation problems. Adv OR AI Methods Transp 51:60

    Google Scholar 

  14. Cheng M-Y, Lien L-C (2012) Hybrid artificial intelligence-based PBA for benchmark functions and facility layout design optimization. J Comput Civ Eng 26:612–624. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000163

    Article  Google Scholar 

  15. Holland JH (1975) Adaptation in natural and artificial systems, 2nd edn. University of Michigan Press, Ann Arbor

    Google Scholar 

  16. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  17. Keshk M, Singh H, Abbass H (2018) Automatic estimation of differential evolution parameters using Hidden Markov Models. Evolut Intell 10:77–93. https://doi.org/10.1007/s12065-018-0153-5

    Article  Google Scholar 

  18. Yang XS, Deb S (2009) Cuckoo search via Levy flights. 2009 World Congress nature & biologically inspired computing NABIC 2009—proceedings, pp 210–214. https://doi.org/10.1109/nabic.2009.5393690

  19. Glover F (1989) Tabu Search-part I. ORSA J Comput 1:190–206. https://doi.org/10.1002/jbm.820231004

    Article  MATH  Google Scholar 

  20. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science (80-) 220:671–680

    Article  MathSciNet  Google Scholar 

  21. Yang XS (2009) Harmony search as a metaheuristic algorithm. Stud Comput Intell 191:1–14. https://doi.org/10.1007/978-3-642-00185-7_1

    Article  Google Scholar 

  22. Cheng MY, Prayogo D (2014) Symbiotic Organisms Search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112. https://doi.org/10.1016/j.compstruc.2014.03.007

    Article  Google Scholar 

  23. Cheng M-Y, Chiu Y-F, Chiu C-K et al (2018) Risk-based maintenance strategy for deteriorating bridges using a hybrid computational intelligence technique: a case study. Struct Infrastruct Eng. https://doi.org/10.1080/15732479.2018.1547767

    Article  Google Scholar 

  24. Prasad D, Mukherjee V (2016) A novel Symbiotic Organisms Search algorithm for optimal power flow of power system with FACTS devices. Eng Sci Technol Int J 19:79–89. https://doi.org/10.1016/j.jestch.2015.06.005

    Article  Google Scholar 

  25. Sharma M, Verma A (2017) Energy-aware discrete symbiotic organism search optimization algorithm for task scheduling in a cloud environment. In: 4th international conference on signal processing and integrated networks (SPIN), Noida, pp 513–518. https://doi.org/10.1109/SPIN.2017.8050004

  26. Dib N (2017) Design of planar concentric circular antenna arrays with reduced side lobe level using Symbiotic Organisms Search. Neural Comput Appl. https://doi.org/10.1007/s00521-017-2971-2

    Article  Google Scholar 

  27. Ayala HVH, Klein CE, Mariani VC, Coelho LDS (2017) Multiobjective symbiotic search algorithm approaches for electromagnetic optimization. IEEE Trans Magn 53:1–4. https://doi.org/10.1109/TMAG.2017.2665350

    Article  Google Scholar 

  28. Wolpert DH, Macready WG (1997) Wolpert—no free lunch theorems.pdf. 1:67–82. https://doi.org/10.1109/4235.585893

  29. Kusyk J, Uyar MU, Sahin CS (2018) Survey on evolutionary computation methods for cybersecurity of mobile ad hoc networks. Evolut Intell 10:95–117. https://doi.org/10.1007/s12065-018-0154-4

    Article  Google Scholar 

  30. Ibrahim AM, Tawhid MA (2019) A hybridization of cuckoo search and particle swarm optimization for solving nonlinear systems. Evolut Intell 12:541–561. https://doi.org/10.1007/s12065-019-00255-0

    Article  Google Scholar 

  31. Saha S, Mukherjee V (2018) A novel chaos-integrated Symbiotic Organisms Search algorithm for global optimization. Soft Comput 22:3797–3816. https://doi.org/10.1007/s00500-017-2597-4

    Article  Google Scholar 

  32. Nama S, Saha AK, Ghosh S (2016) Improved Symbiotic Organisms Search algorithm for solving unconstrained function optimization. Decis Sci Lett 5:361–380. https://doi.org/10.5267/j.dsl.2016.2.004

    Article  Google Scholar 

  33. Tejani GG, Savsani VJ, Patel VK (2016) Adaptive Symbiotic Organisms Search (SOS) algorithm for structural design optimization. J Comput Des Eng 3:226–249. https://doi.org/10.1016/j.jcde.2016.02.003

    Article  Google Scholar 

  34. Al-Sharhan S, Omran MGH (2018) An enhanced Symbiosis Organisms Search algorithm: an empirical study. Neural Comput Appl 29:1025–1043. https://doi.org/10.1007/s00521-016-2624-x

    Article  Google Scholar 

  35. Guha D, Roy PK, Banerjee S (2018) Symbiotic Organism Search algorithm applied to load frequency control of multi-area power system. Energy Syst 9:439–468. https://doi.org/10.1007/s12667-017-0232-1

    Article  Google Scholar 

  36. Ezugwu AE-S, Adewumi AO (2017) Discrete Symbiotic Organisms Search algorithm for travelling salesman problem. Expert Syst Appl 87:70–78. https://doi.org/10.1016/j.eswa.2017.06.007

    Article  Google Scholar 

  37. Panda A, Pani S (2018) An orthogonal parallel Symbiotic Organism Search algorithm embodied with augmented Lagrange multiplier for solving constrained optimization problems. Soft Comput 22:2429–2447. https://doi.org/10.1007/s00500-017-2693-5

    Article  MATH  Google Scholar 

  38. Karaboga D, Akay B (2009) A comparative study of Artificial Bee Colony algorithm. Appl Math Comput 214:108–132. https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  MATH  Google Scholar 

  39. Alatas B (2010) Chaotic bee colony algorithms for global numerical optimization. Expert Syst Appl 37:5682–5687. https://doi.org/10.1016/j.eswa.2010.02.042

    Article  Google Scholar 

  40. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimisation with chaos. Neural Comput Appl 25:1077–1097. https://doi.org/10.1007/s00521-014-1597-x

    Article  Google Scholar 

  41. Wang N, Liu L (2001) Genetic algorithm in chaos. OR Trans 5:1–10

    Google Scholar 

  42. Yang LJ, Chen TL (2002) Application of chaos in genetic algorithms. Commun Theor Phys 38:167–172

    Google Scholar 

  43. Jothiprakash V, Arunkumar R (2013) Optimization of hydropower reservoir using evolutionary algorithms coupled with chaos. Water Resour Manag 27:1963–1979. https://doi.org/10.1007/s11269-013-0265-8

    Article  Google Scholar 

  44. Zhenyu G, Bo C, Min Y, Binggang C (2006) Self-adaptive chaos differential evolution. In: Jiao L, Wang L, Gao X, Liu J, Wu F (eds) Advances in natural computation. ICNC 2006. Lecture notes in computer science, vol 4221. Springer, Berlin, Heidelberg, pp 972–975. https://doi.org/10.1007/11881070_128

    Chapter  Google Scholar 

  45. Saremi S, Mirjalili SM, Mirjalili S (2014) Chaotic krill herd optimization algorithm. Procedia Technol 12:180–185. https://doi.org/10.1016/j.protcy.2013.12.473

    Article  Google Scholar 

  46. Wang GG, Guo L, Gandomi AH et al (2014) Chaotic krill herd algorithm. Inf Sci (Ny) 274:17–34. https://doi.org/10.1016/j.ins.2014.02.123

    Article  MathSciNet  Google Scholar 

  47. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  48. Du D, Simon D, Ergezer M (2009) Biogeography-based optimization combined with evolutionary strategy and immigration refusal. In: Proceedings of the 2009 IEEE international conference on systems, man and cybernetics. IEEE Press, Piscataway, NJ, USA, pp 997–1002

  49. Bhattacharya A, Chatoopadhyay P (2010) Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Trans Power Syst 25:1955–1964

    Article  Google Scholar 

  50. Gong W, Cai Z, Ling CX (2011) DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput 15:645–665. https://doi.org/10.1007/s00500-010-0591-1

    Article  Google Scholar 

  51. Suganthan PN, Hansen N, Liang JJ et al (2014) Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. KanGAL, pp 251–256

  52. Garg H (2013) Solving structural engineering design optimization problems using an Artificial Bee Colony algorithm. J Ind Manag Optim 10:777–794. https://doi.org/10.3934/jimo.2014.10.777

    Article  MathSciNet  MATH  Google Scholar 

  53. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116:405–411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Yuan Cheng.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, MY., Gosno, R.A. SOS 2.0: an evolutionary approach for SOS algorithm. Evol. Intel. 14, 1965–1983 (2021). https://doi.org/10.1007/s12065-020-00476-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00476-8

Keywords