[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Dimensionality reduction of hyperspectral image using signal entropy and spatial information in genetic algorithm with discrete wavelet transformation

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Band selection is being performed in hyperspectral imagery as a dimensionality reduction measure to enhance the efficiency of processing and analysis of the data. In this paper, a genetic algorithm based method is proposed that uses weighted combination of signal entropy and image spatial information in the objective function. The spatial dimension, that also includes huge redundancy, has been reduced using discrete wavelet transformation to make the method more time efficient without compromising the quality of the output. The performance of the method is evaluated by classifying the hyperspectral image with selected bands and measuring the accuracy of the classified output. The proposed method is also compared with other state of the art methods and found to be more efficient in selecting information rich bands in the hyperspectral data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cao X, Han J, Yang S, Tao D, Jiao L (2016) Band selection and evaluation with spatial information. Int J Remote Sens 37(19):4501–4520. https://doi.org/10.1080/01431161.2016.1214301

    Article  Google Scholar 

  2. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273

    MATH  Google Scholar 

  3. Cover TM, Thomas JA (2012) Elements of information theory, 2nd edn. Wiley. ISBN: 9788126541942, 9788126541942

    Google Scholar 

  4. Deepa P, Thilagavathi K (2015) Feature extraction of hyperspectral image using principal component analysis and folded-principal component analysis. In: 2015 2nd international conference on electronics and communication systems (ICECS). IEEE, pp 656–660

  5. Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley Interscience, New York

    MATH  Google Scholar 

  6. Ghorbanian A, Mohammadzadeh A (2018) An unsupervised feature extraction method based on band correlation clustering for hyperspectral image classification using limited training samples. Remote Sens Lett 9(10):982–991. https://doi.org/10.1080/2150704X.2018.1500723

    Article  Google Scholar 

  7. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New York

    MATH  Google Scholar 

  8. Gonzalez RC, Woods R (2007) Digital image processing, 2nd edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  9. Hurtik P, Tomasiello S (2019) A review on the application of fuzzy transform in data and image compression. Soft Comput 23:12641–12653. https://doi.org/10.1007/s00500-019-03816-8

    Article  MATH  Google Scholar 

  10. Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63. https://doi.org/10.1109/TIT.1968.1054102

    Article  Google Scholar 

  11. Jannati M, Zoej MJV (2015) Introducing genetic modification concept to optimize rational function models (RFMs) for georeferencing of satellite imagery. GIScience Remote Sens 52(4):510–525. https://doi.org/10.1080/15481603.2015.1052634

    Article  Google Scholar 

  12. Li S, Wu H, Wan D, Zhu J (2011) An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine. Knowl Based Syst 24(1):40–48

    Article  Google Scholar 

  13. Nakariyakul S, Casasent DP (2008) Improved forward floating selection algorithm for feature subset selection. In: Proceedings of international conference on wavelet analysis and pattern recognition. IEEE, Hong Kong

  14. Paul A, Chaki N (2019) Dimensionality reduction of hyperspectral images using pooling. Pattern Recogn Image Anal 29(1):72–78. https://doi.org/10.1134/S1054661819010085

    Article  Google Scholar 

  15. Paul A, Chaki N (2019) Dimensionality reduction using band correlation and variance measure from discrete wavelet transformed hyperspectral imagery. Ann Data Sci. https://doi.org/10.1007/s40745-019-00210-x

    Article  Google Scholar 

  16. Paul A, Sahoo P, Chaki N (2020) Dimensionality reduction of hyperspectral images: a data-driven approach for band selection. In: Chaki R, Cortesi A, Saeed K, Chaki N (eds) Advanced computing and systems for security: advances in intelligent systems and computing, vol 1136. Springer, Singapore, pp 11–27. https://doi.org/10.1007/978-981-15-2930-6_2

    Chapter  Google Scholar 

  17. Paul A, Bhoumik S, Chaki N (2020) SSNET: an improved deep hybrid network for hyperspectral image classification. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05069-1

    Article  Google Scholar 

  18. Paul A, Bhattacharya S, Dutta D, Sharma JR, Dadhwal VK (2015) Band selection in hyperspectral imagery using spatial cluster mean and genetic algorithms. GISci Remote Sens 52(6):644–661. https://doi.org/10.1080/15481603.2015.1075180

    Article  Google Scholar 

  19. Sellami A, Farah M, Farah IR, Solaiman B (2018) Hyperspectral imagery semantic interpretation based on adaptive constrained band selection and knowledge extraction techniques. IEEE J Sel Top Appl Earth Obs Remote Sens 11(4):1337–1347

    Article  Google Scholar 

  20. Serpico SB, Bruzzone L (2001) A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Trans Geosci Remote Sens 39(7):1360–1367

    Article  Google Scholar 

  21. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Article  MathSciNet  Google Scholar 

  22. Sun W, Du Q (2018) Graph-regularized fast and robust principal component Analysis for hyperspectral band selection. IEEE Trans Geosci Remote Sens 56(6):3185–3195

    Article  Google Scholar 

  23. Su H, Cai Y, Du Q (2017) Firefly-algorithm-inspired framework with band selection and extreme learning machine for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 10(1):309–320

    Article  Google Scholar 

  24. Sun K, Geng X, Ji L (2015) Exemplar component analysis: a fast band selection method for hyperspectral imagery. IEEE Geosci Remote Sens Lett 12(5):998–1002

    Article  Google Scholar 

  25. Sun Y, Wang S, Liu Q, Hang R, Liu G (2017) Hypergraph embedding for spatial-spectral joint feature extraction in hyperspectral images. Remote Sens 9(5):506. https://doi.org/10.3390/rs9050506

    Article  Google Scholar 

  26. Swain PH, Davis SM (1978) Remote sensing: the quantitative approach. McGraw-Hill, New York

    Google Scholar 

  27. Wang Q, Lin J, Yuan Y (2016) Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans Neural Netw Learn Syst 27(6):1279–1289

    Article  Google Scholar 

  28. Yuan Y, Lin J, Wang Q (2016) Dual-clustering-based hyperspectral band selection by contextual analysis. IEEE Trans Geosci Remote Sens 54(3):1431–1445

    Article  Google Scholar 

  29. Yuan Y, Zheng X, Lu X (2017) Discovering diverse subset for unsupervised hyperspectral band selection. IEEE Trans Image Process 26(1):51–64

    Article  MathSciNet  Google Scholar 

  30. Zhang W, Li X, Zhao L (2018) A fast hyperspectral feature selection method based on band correlation analysis. IEEE Geosci Remote Sens Lett 15(11):1750–1754

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arati Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A., Chaki, N. Dimensionality reduction of hyperspectral image using signal entropy and spatial information in genetic algorithm with discrete wavelet transformation. Evol. Intel. 14, 1793–1802 (2021). https://doi.org/10.1007/s12065-020-00460-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00460-2

Keywords