[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Numerical optimization and feed-forward neural networks training using an improved optimization algorithm: multiple leader salp swarm algorithm

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Metaheuristics are one of the most promising techniques for solving optimization problems. Salp swarm algorithm (SSA) is a new swarm intelligence based metaheuristic. To improve the performance of SSA, this paper introduces multiple leader salp swarm algorithm (MLSSA), which has more exploratory power than SSA. The algorithm is tested on several mathematical optimization benchmark functions. Results are compared with some well known metaheuristics. The results represents the capability of MLSSA to converge towards the optimum. In recent studies many metaheuristic techniques are applied to train feed-forward neural networks. In this paper MLSSA is also applied for neural network training and is analysed for thirteen different datasets. Performance is compared with SSA, particle swarm optimization, differential evolution, genetic algorithm, ant colony optimization and evolution strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rao SS (2009) Engineering optimization: theory and practice. Wiley, Hoboken

    Book  Google Scholar 

  2. Glover FW, Kochenberger GA (eds) (2006) Handbook of metaheuristics, vol 57. Springer, Berlin

  3. Hertz J (1991) Introduction to the theory of neural computation. Basic Books, New York, p 1

    Google Scholar 

  4. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  5. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS’95. IEEE, pp 39–43

  6. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  7. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization, vol 200. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department

  8. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  9. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Proceedings of the workshop on nature inspired cooperative strategies for optimization (NICSO 2010). Springer, pp 65–74

  10. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio Inspired Comput 2:78–84

    Article  Google Scholar 

  11. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  12. Bansal JC, Sharma H, Jadon SS, Clerc M (2014) Spider monkey optimization algorithm for numerical optimization. Memet Comput 6(1):31–47

    Article  Google Scholar 

  13. Bairathi D, Gopalani D (2018) A novel swarm intelligence based optimization method: harris hawk optimization. In International conference on intelligent systems design and applications. Springer, Cham, pp 832–842

  14. Shadravan S, Naji HR, Bardsiri VK (2019) The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34

    Article  Google Scholar 

  15. Yapici H, Cetinkaya N (2019) A new meta-heuristic optimizer: pathfinder algorithm. Appl Soft Comput 78:545–568

    Article  Google Scholar 

  16. Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evolut Comput 44:148–175

    Article  Google Scholar 

  17. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72

    Article  Google Scholar 

  18. Rechenberg I (1989) Evolution strategy: natures way of optimization. In: Optimization: methods and applications. Possibilities and limitations. Springer, Berlin, pp 106–126

  19. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, Vol 1. MIT press, Cambridge

    MATH  Google Scholar 

  20. Dasgupta D, Zbigniew M (eds) (2013) Evolutionary algorithms in engineering applications. Springer, Berlin

  21. Storn R, Price K (1997) Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  22. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713

    Article  Google Scholar 

  23. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  24. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  25. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    Article  MATH  Google Scholar 

  26. Erol OK, Eksin I (2006) A new optimization method: big bangbig crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  27. Webster B, Bernhard PJ (2003) A local search optimization algorithm based on natural principles of gravitation. In: Proceedings of the 2003 international conference on information and knowledge engineering (IKE03). pp 255–261

  28. Formato RA (2007) Central force optimization: a new metaheuristic with applica- tions in applied electromagnetics. Prog Electromag Res 77:425–491

    Article  Google Scholar 

  29. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clus- tering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  30. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  31. Yadav A (2019) AEFA: Artificial electric field algorithm for global optimization. Swarm Evolut Comput 48:93–108

    Article  Google Scholar 

  32. Rao RV, Savsani VJ, Vakharia DP (2012) Teachinglearning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183:1–15

    Article  Google Scholar 

  33. Rao RV, Savsani VJ, Vakharia DP (2011) Teachinglearning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43:303–315

    Article  Google Scholar 

  34. Glover F (1989) Tabu search part I. ORSA J Comput 1(3):190–206

    Article  MATH  Google Scholar 

  35. Glover F (1990) Tabu search part II. ORSA J Comput 2:4–32

    Article  MATH  Google Scholar 

  36. Eita MA, Fahmy MM (2014) Group counseling optimization. Appl Soft Comput 22:585–604

    Article  Google Scholar 

  37. Eita MA, Fahmy MM (2010) Group counseling optimization: a novel approach. In: Bramer M, Ellis R, Petridis M (eds) Research and development in intelligent systems XXVI. Springer, London, pp 195–208

    Chapter  Google Scholar 

  38. He S, Wu Q, Saunders J (2006) A novel group search optimizer inspired by animal behavioural ecology. In: Proceedings of the 2006 IEEE congress on evolutionary computation. CEC, pp 1272–1278

  39. He S, Wu QH, Saunders J (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evolut Comput 13:973–90

    Article  Google Scholar 

  40. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: Proceedings of the 2007 IEEE congress on evolutionary computation. CEC, pp 4661–4667

  41. Dai C, Zhu Y, Chen W (2007) Seeker optimization algorithm. Computational intelligence and security. Springer, Berlin, pp 167–176

    Book  Google Scholar 

  42. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. Advances in swarm intelligence. Springer, Berlin, pp 355–364

    Book  Google Scholar 

  43. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183

    Article  Google Scholar 

  44. Zhang J, Xiao M, Gao L, Pan Q (2018) Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems. Appl Math Model 63:464–490

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang K, Huang Q, Zhang Y, Song J, Shi J (2019) Hybrid Lagrange interpolation differential evolution algorithm for path synthesis. Mech Mach Theory 134:512–540

    Article  Google Scholar 

  46. Zhao W, Wang L, Zhang Z (2019) A novel atom search optimization for dispersion coefficient estimation in groundwater. Future Gener Comput Syst 91:601–610

    Article  Google Scholar 

  47. Zhao W, Wang L, Zhang Z (2019) Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl Based Syst 163:283–304

    Article  Google Scholar 

  48. Sharma N, Sharma H, Sharma A (2018) Beer froth artificial bee colony algorithm for job-shop scheduling problem. Appl Soft Comput 68:507–524

    Article  Google Scholar 

  49. Lyu Z, Wei Z, Pan J, Chen H, Xia C, Han J, Shi L (2019) Periodic charging planning for a mobile WCE in wireless rechargeable sensor networks based on hybrid PSO and GA algorithm. Appl Soft Comput 75:388–403

    Article  Google Scholar 

  50. Mokarram MJ, Niknam T, Aghaei J, Shafie-khah M, Catalo JP (2019) Hybrid optimization algorithm to solve the nonconvex multiarea economic dispatch problem. IEEE Syst J PP(99):1–10

    Google Scholar 

  51. Al-Tashi Q, Kadir SJA, Rais HM, Mirjalili S, Alhussian H (2019) Binary optimization using hybrid grey wolf optimization for feature selection. IEEE Access 7:39496–39508

    Article  Google Scholar 

  52. Wahid F, Ghazali R, Ismail LH (2019) An enhanced approach of artificial bee colony for energy management in energy efficient residential building. Wirel Pers Commun 104(1):235–257

    Article  Google Scholar 

  53. Wahid F, Kim DH (2016) An efficient approach for energy consumption optimization and management in residential building using artificial bee colony and fuzzy logic. Math Probl Eng 2016:9104735. https://doi.org/10.1155/2016/9104735

    Article  Google Scholar 

  54. Wahid F, Ghazali R (2019) Hybrid of firefly algorithm and pattern search for solving optimization problems. Evolut Intell 12(1):1–10

    Article  Google Scholar 

  55. Mohammadpour T, Bidgoli AM, Enayatifar R, Javadi HHS (2019) Efficient clustering in collaborative filtering recommender system: hybrid method based on genetic algorithm and gravitational emulation local search algorithm. Genomics. https://doi.org/10.1016/j.ygeno.2019.01.001

    Article  Google Scholar 

  56. Rumelhart DE, Williams RJ, Hinton GE (1986) Learning internal representations by error propagation. Parallel Distrib Process Explor Microstruct Cogn 1:318–362

    Google Scholar 

  57. Mendes R, Cortez P, Rocha M, Neves J (2002) Particle swarm for feedforward neural network training. In: Proceedings of the international joint conference on neural networks, vol 2. pp 1895–1899

  58. Meissner M, Schmuker M, Schneider G (2006) Optimized particle swarm optimization (OPSO) and its application to artificial neural network training. BMC Bioinform 7:125

    Article  Google Scholar 

  59. Fan H, Lampinen J (2003) A trigonometric mutation operation to differential evolution. J Glob Optim 27:105–129

    Article  MathSciNet  MATH  Google Scholar 

  60. Slowik A, Bialko M (2008) Training of artificial neural networks using differential evolution algorithm. Hum Syst Interact. https://doi.org/10.1109/HSI.2008.4581409

    Article  MATH  Google Scholar 

  61. Gao Q, Lei KQY, He Z (2005) An improved genetic algorithm and its application in artificial neural network, information, communications and signal processing, 2005. In: Fifth international conference on, December 06–09, 2005, pp 357–360

  62. Tsai JT, Chou JH, Liu TK (2006) Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans Neural Netw 17(1):69–80

    Article  Google Scholar 

  63. Blum C, Socha K (2005) Training feed-forward neural networks with ant colony optimization: an application to pattern classification. In: 5th international conference on, hybrid intelligent systems, 2005. HIS05, p 6

  64. Socha K, Blum C (2007) An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Comput Appl 16:235–247

    Article  Google Scholar 

  65. Pavlidis NG, Tasoulis DK, Plagianakos VP, Nikiforidis G, Vrahatis MN (2005) Spiking neural network training using evolutionary algorithms, neural networks, 2005. In: IJCNN 05. Proceedings 2005 IEEE international joint conference, vol 4. pp 2190–2194

  66. Ozturk C, Karaboga D (2011) Hybrid artificial bee colony algorithm for neural network training. In: 2011 IEEE congress on evolutionary computation (CEC). pp 84–88

  67. Bairathi D, Gopalani D (2017) Opposition-based sine cosine algorithm (OSCA) for training feed-forward neural networks. In: 13th International conference on signal-image technology and internet-based systems (SITIS). IEEE, pp 438–444

  68. Bairathi D, Gopalani D (2017) Salp swarm algorithm (SSA) for training feed-forward neural networks. In: 7th International conference soft computing for problem solving, Bhubaneswar

  69. Mirjalili S (2015) How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl Intell 43(1):150–161

    Article  Google Scholar 

  70. Aljarah I, Faris H, Mirjalili S (2016) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput 22:1–15

    Article  Google Scholar 

  71. Olorunda O, Engelbrecht AP (2008) Measuring exploration/exploitation in particle swarms using swarm diversity. In: IEEE congress on evolutionary computation, 2008. CEC 2008. (IEEE world congress on computational intelligence). IEEE, pp 1128–1134

  72. Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans Evolut Comput 9(2):126–142

    Article  Google Scholar 

  73. Crepinsek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv (CSUR) 45(3):35

    Article  MATH  Google Scholar 

  74. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31(4):635–672

    Article  MathSciNet  MATH  Google Scholar 

  75. Bansal JC, Sharma H, Nagar A, Arya KV (2013) Balanced artificial bee colony algorithm. Int J Artif Intell Soft Comput 3(3):222–243

    Article  Google Scholar 

  76. Liang J, Qu B, Suganthan P, Chen Q (2014) Problem definitions and evaluation criteria for the Cec 2015 competition on learning-based real-parameter single objective optimization, technical report 201411A, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore

  77. Blake CL, Merz CJ (1998) UCI repository of machine learning databases, 1998

  78. Mirjalili S, Mirjalili SM, Lewis A (2014) Let a biogeography-based optimizer train your multi-layer perceptron. Inf Sci 269:188–209

    Article  MathSciNet  Google Scholar 

  79. Demar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7(Jan):1–30

    MathSciNet  Google Scholar 

  80. Garca S, Fernndez A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180(10):2044–2064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divya Bairathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairathi, D., Gopalani, D. Numerical optimization and feed-forward neural networks training using an improved optimization algorithm: multiple leader salp swarm algorithm. Evol. Intel. 14, 1233–1249 (2021). https://doi.org/10.1007/s12065-019-00269-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-019-00269-8

Keywords

Navigation