[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A monte carlo approach to population dynamics of cells in a HIV immune response model

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

Using a direct Monte Carlo simulation, population growth of helper T-cells (N H) and viral cells (N v) is studied for an immune response model with an enhanced spatial inter-cellular interaction relevant to HIV as a function of viral mutation. In the absence of cellular mobility (P mob=0), the helper T-cells grow nonmonotonically before reaching saturation and the viral population grows monotonically before reaching a constant equilibrium. Cellular mobility (P mob=1) enhances the viral growth and reduces the stimulative T-cell growth. Below a mutation threshold (P c), the steady-state density of helper T-cell (p H) is larger than that of the Virus (p v); the density difference Δp o(=pV−pH) remains a constant at P mob=1 while −Δp o→0 as P mutP c at P mob=0. Above the mutation threshold, the difference Δp o in cell density, grows with ΔP=P mutP c monotonically: ΔP o ∞ (ΔP)β ≃ with β≈0.574±0.016 in absence of mobility, while Δp o≈6(ΔP) with P mob=1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Perelson and G. Weisbuch, Rev. Mod. Phys. 69, 1219 (1997).

    Article  CAS  Google Scholar 

  2. I. Dayan, D. Stauffer, and S. Havlin, J. Phys. A 21, 2473 (1988); A. U. Neumann, Physica A 162, 1 (1989).

    Article  Google Scholar 

  3. S. Moss de Oliveira, P. M. C. de Oliveira, and D. Stauffer, “Evolution, Money, War and Computers”, Teubner (Stuttgart and Leipzig, 1999) Chapter 3.

  4. R. B. Pandey, in “Scientific Computing in Europe, SCE 1996”, Sept. 2–4, 1996, Dublin, Ireland, edited by H. J. Ruskin, R. O’Connor, and Y. Feng.

  5. R. Z. dos Santos, Ann. Rev. Comp. Phys. vol. VI, edited by D. Stauffer, World Scientific Singapore, 1999, p. 159.

  6. D. Chowdhury, M. Sahimi, and D. Stauffer, J. Theor. Bio. 152, 263 (1991).

    Article  CAS  Google Scholar 

  7. D. Stauffer and R. B. Pandey, Computers in Physics 6, 404 (1992).

    Google Scholar 

  8. R. B. Pandey, Physica A 179, 442 (1991).

    Article  Google Scholar 

  9. F. Castiglione, M. Bernaschi, and S. Succi, Int. J. Mod. Phys. C 8, 527 (1997).

    Article  Google Scholar 

  10. E. Ahmed, J. Stat. Phys. 85, 291 (1996).

    Article  Google Scholar 

  11. K. Kaneko, Physica D 103, 505 (1997) and references therein.

    Article  Google Scholar 

  12. A. Mielke and R. B. Pandey, Physica A 251, 430 (1998).

    Article  Google Scholar 

  13. R. B. Pandey, Theor. Biosci. 117, 32 (1998).

    Google Scholar 

  14. R. Mannion, H. Ruskin, and R. B. Pandey, Theor. Biosci. (accepted for publication, 1999).

  15. A. S. Fauci, G. Pantaleo, S. Stanley and D. Weissmann, Ann. Internal Medic. 124, 654 (1996).

    CAS  Google Scholar 

  16. P. D. Greenberg and S. R. Riddell, Science 285, 546 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannion, R., Ruskin, H.J. & Pandey, R.B. A monte carlo approach to population dynamics of cells in a HIV immune response model. Theory Biosci. 119, 145–155 (2000). https://doi.org/10.1007/s12064-000-0011-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-000-0011-7

Key words

Navigation