Abstract
Until about a decade or so, till the fast-paced development and usage of computers, organic chemistry students often chose experimental projects during an internship. Presently, there are software packages that solve quantum chemical equations and present the possibility of a ‘black-box’ type of approach to getting exposed to computational organic chemistry. Encouraging as this may seem, Indian university students can find the entry to and an understanding of computational chemistry daunting due to a lack of exposure to research. This article attempts to bridge the gap for such students by providing a gentle introduction to the field of quantum chemistry.
Similar content being viewed by others
Suggested Reading
S. M. Bachrach, Computational organic chemistry, Second edition, Hoboken, New Jersey: Wiley, 2014.
D. Rowley and H. Steiner, “Kinetics of diene reactions at high temperatures”, Discuss. Faraday Soc., Vol.10, No.0, pp.198–213, Jan.1951, doi: https://doi.org/10.1039/DF9511000198.
K. N. Houk, Y. Tsong, Lin and F. K. Brown, “Evidence for the concerted mechanism of the Diels—Alder reaction of butadiene with ethylene”, J. Am. Chem., Soc., Vol.108, No.3, pp.554–556, Feb.1986, doi: https://doi.org/10.1021/ja00263a059.
R. D. Bach, J. J. W. McDouall, H. B. Schlegel, and G. J. Wolber, “Electronic factors influencing the activation barrier of the Diels—Alder reaction, An ab initio study”, J. Org. Chem., Vol.54, No.12, pp.2931–2935, Jun. 1989, doi: https://doi.org/10.1021/jo00273a029.
R. V. Stanton and K. M. Merz, “Density functional transition states of organic and organometallic reactions”, J. Chem. Phys., Vol.100, No.1, pp.434–443, Jan. 1994, doi: https://doi.org/10.1063/1.466956.
Y. Li and K. N. Houk, “Diels—Alder dimerization of 1,3-butadiene: an ab initio CASSCF study of the concerted and stepwise mechanisms and butadiene-ethylene revisited”, J. Am. Chem. Soc., Vol.115, No.16, pp.7478–7485, Aug. 1993, doi: https://doi.org/10.1021/ja00069a055.
V. Barone and R. Arnaud, “Diels—Alder reactions: An assessment of quantum chemical procedures”, J. Chem. Phys., Vol.106, No.21, pp.8727–8732, Jun. 1997, doi: https://doi.org/10.1063/1.473933.
H. ISOBE et al., “Extended Hartree—Fock (EHF) theory of chemical reactions VI: hybrid DFT and post-Hartree—Fock approaches for concerted and non-concerted transition structures of the Diels—Alder reaction”, Mol. Phys., Vol.100, No.6, pp.717–727, Mar. 2002, doi: https://doi.org/10.1080/00268970110092375.
S. Sakai, “Theoretical Analysis of Concerted and Stepwise Mechanisms of Diels—Alder Reaction between Butadiene and Ethylene”, J. Phys. Chem. A, Vol.104, No.5, pp.922–927, Feb. 2000, doi: https://doi.org/10.1021/jp9926894.
H. Lischka, E. Ventura and M. Dallos, “The Diels—Alder Reaction of Ethene and 1,3-Butadiene: An Extended Multireference ab initio Investigation”, ChemPhysChem, Vol.5, No.9, pp.1365–1371, 2004, doi: https://doi.org/10.1002/cphc.200400104.
W. L. Jorgensen, D. Lim and J. F. Blake, “Ab initio study of Diels—Alder reactions of cyclopentadiene with ethylene, isoprene, cyclopentadiene, acrylonitrile, and methyl vinyl ketone”, J. Am. Chem. Soc., Vol.115, No.7, pp.2936–2942, Apr. 1993, doi: https://doi.org/10.1021/ja00060a048.
P. G. Szalay and R. J. Bartlett, “Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI”, Chem. Phys. Lett., Vol.214, No.5, pp.481–488, Nov. 1993, doi: https://doi.org/10.1016/0009-2614(93)85670-J.
B. Jursic and Z. Zdravkovski, “DFT study of the Diels—Alder reactions between ethylene with buta-1,3-diene and cyclopentadiene”, J. Chem. Soc. Perkin Trans. 2, Vol.0, No.6, pp.1223–1226, 1995, doi: https://doi.org/10.1039/P29950001223.
E. Goldstein, B. Beno and K. N. Houk, “Density Functional Theory Prediction of the Relative Energies and Isotope Effects for the Concerted and Stepwise Mechanisms of the Diels—Alder Reaction of Butadiene and Ethylene”, J. Am. Chem. Soc., Vol.118, No.25, pp.6036–6043, Jan. 1996, doi: https://doi.org/10.1021/ja9601494.
E. Kraka, A. Wu, and D. Cremer, “Mechanism of the Diels—Alder Reaction Studied with the United Reaction Valley Approach: Mechanistic Differences between Symmetry-Allowed and Symmetry-Forbidden Reactions,” J. Phys. Chem. A, Vol.107, No.42, pp.9008–9021, Oct. 2003, doi: https://doi.org/10.1021/jp030882z.
V. A. Guner, K. S. Khuong, K. X. Houk, A. Chuma, and P. Pulay, “The Performance of the Handy/Cohen Functionals, OLYP and O3LYP, for the Computation of Hydrocarbon Pericyclic Reaction Activation Barriers”, J. Phys. Chem. A, Vol.108, No.15, pp.2959–2965, Apr. 2004, doi: https://doi.org/10.1021/jp0369286.
R. D. J. Froese, S. Humbel, M. Svensson, and K. Morokuma, “IMOMO(G2MS): A New High-Level G2-Like Method for Large Molecules and Its Aplications to Diels—Alder Reactions”, J. Phys. Chem. A., Vol.101, No.2, pp.227–233, Jan. 1997, doi: https://doi.org/10.1021/jp963019q
M. J. S. Dewar, “Multibond reactions cannot normally be synchronous”, J. Am. Chem. Soc., Vol.106, No.1, pp.209–219, Jan. 1984, doi: https://doi.org/10.1021/ja00313a042.
J. Bigeleisen and M. G. Mayer, “Calculation of Equilibrium Constants for Isotopic Exchange Reactions”, J. Chem. Phys., Vol.15, No.5, pp.261–267, May 1947, doi: https://doi.org/10.1063/1.1746492.
J. W. Storer, L. Raimondi and K. N. Houk, “Theoretical Secondary Kinetic Isotope Effects and the Interpretation of Transition State Geometries. 2. The Diels—Alder Reaction Transition State Geometry”, J. Am. Chem. Soc., Vol.116, No.21, pp.9675–9683, Oct. 1994, doi: https://doi.org/10.1021/ja00100a037.
A. Strietwieser, R. H. Jagow, R. C. Fahey and S. Suzuki, “Kinetic isotope effects in the acetolyses of deuterated cyclopentyl tosylates”, J Am Chem Soc, Vol.80, p.2326, 1058.
J. J. Gajewski, K. B. Peterson, J. R. Kagel, and Y. C. J. Huang, “Transition-state structure variation in the Diels—Alder reaction from secondary deuterium kinetic isotope effects. The reaction of nearly symmetrical dienes and dienophiles is nearly synchronous”, J. Am. Chem. Soc., Vol.111, No.25, pp.9078–9081, Dec. 1989, doi: https://doi.org/10.1021/ja00207a013.
D. E. Van Sickle and J. Otto. Rodin, “The Secondary Deuterium Isotope Effect on the Diels—Alder Reaction”, J. Am. Chem. Soc., Vol.86, No.15, pp.3091–3094, Aug. 1964, doi: https://doi.org/10.1021/ja01069a024.
D. A. Singleton and A. A. Thomas, “High-Precision Simultaneous Determination of Multiple Small Kinetic Isotope Effects at Natural Abundance”, J. Am. Chem. Soc., Vol.117, No.36, pp.9357–9358, Sep. 1995, doi: https://doi.org/10.1021/ja00141a030.
B. R. Beno, K. N. Houk, and D. A. Singleton, “Synchronous or Asynchronous? An ‘Experimental’ Transition State from a Direct Comparison of Experimental and Theoretical Kinetic Isotope Effects for a Diels—Alder Reaction”, J. Am. Chem. Soc., Vol.118, No.41, pp.9984–9985, Jan. 1996, doi: https://doi.org/10.1021/ja9615278.
R. Pariser and R. G. Parr, “A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I.”, J. Chem. Phys., Vol.21, No.3, pp.466–471, Mar. 1953, doi: https://doi.org/10.1063/1.1698929.
C. C. J. Roothaan, “New Developments in Molecular Orbital Theory”, Rev. Mod. Phys., Vol.23, No.2, pp.69–89, Apr. 1951, doi: https://doi.org/10.1103/RevMod-Phys.23.69.
S. F. Boys, G. B. Cook, C. M. Reeves and I. Shavitt, “Automatic Fundamental Calculations of Molecular Structure”, Nature, Vol.178, No.4544, pp.1207–1209, Dec. 1956, doi: https://doi.org/10.1038/1781207a0.
W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton and J. A. Pople, Gaussian 70. 1970.
M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln”, Ann. Phys., Vol.389, No.20, pp.457–484, 1927, doi: https://doi.org/10.1002/andp.l9273892002.
Frank L. Pilar, Elementary quantum chemistry, 2nd ed. Mineola, New York: Dover Publications, 1968.
M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, 1988.
M. Born, J. R. Oppenheimer and A. Physik, “On the Quantum Theory of Molecules”, p.32.
A. Szabo, A. Szabó and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Macmillan, 1982.
Sukarma Thareja and N. Sathyamurthy, “Utility of the Sorbie-Murrell functional form in fitting the potential energy surface for the ground and the lowest excited state of triatomic hydrogen (H3)”, J. Phys. Chem., Vol.91, No.7, pp.1790–1792, Mar. 1987, doi: https://doi.org/10.1021/j100291a022.
P. Pechukas, “Transition State Theory”, Ann Rev Phys Chem, Vol.32, p.159, 1981.
A. B. Callear, “Chapter 4 Basic RRKM Theory”, in Comprehensive Chemical Kinetics, Vol.24, pp.333–356, Elsevier, 1983. doi: https://doi.org/10.1016/S0069-8040(08)70206-1.
D. G. Truhlar and B. C. Garrett, “Variational Transition State Theory”, Annu. Rev. Phys. Chem., Vol.35, p.159, 1984.
L. S. Kassel, “The Dynamics of Unimolecular Reactions”, Chem. Rev., Vol.10, No.1, pp.11–25, Feb. 1932, doi: https://doi.org/10.1021/cr60035a002.
O. K. Rice and H. C. Ramsperger, “Theories of unimolecular gas reactions at low pressures”, J. Am. Chem. Soc., Vol.49, No.7, pp.1617–1629, Jul. 1927, doi: https://doi.org/10.1021/ja01406a001.
M. G. Evans and M. Polanyi, “Some applications of the transition state method to the calculation of reaction velocities, especially in solution”, Trans. Faraday Soc., Vol.31, No.0, pp.875–894, Jan. 1935, doi: https://doi.org/10.1039/TF9353100875.
S. Arrhenius, “Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte.”, p.21.
S. Arrhenius, “Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren.”, p.23.
H. Eyring, “The Activated Complex in Chemical Reactions”, J. Chem. Phys., Vol.3, No.2, pp.107–115, Feb. 1935, doi: https://doi.org/10.1063/1.1749604.
B. K. Carpenter, “Dynamic Matching: The Cause of Inversion of Configuration in the [1,3] Sigmatropic Migration?”, J. Am. Chem. Soc., Vol.117, No.23, pp.6336–6344, Jun. 1995, doi: https://doi.org/10.1021/ja00128a024.
B. K. Carpenter, “Bimodal Distribution of Lifetimes for an Intermediate from a Quasiclassical Dynamics Simulation”, J. Am. Chem. Soc., Vol.118, No.42, pp.10329–10330, Jan. 1996, doi: https://doi.org/10.1021/ja9617707.
A. V. Marenich, C. J. Cramer and D. G. Truhlar, “Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions”, J. Phys. Chem. B, Vol.113, No.18, pp.6378–6396, May 2009, doi: https://doi.org/10.1021/jp810292n.
P. Beak, “Energies and alkylations of tautomeric heterocyclic compounds: old problems — new answers”, Acc. Chem. Res., Vol.10, No.5, pp.186–192, May 1977, doi: https://doi.org/10.1021/ar50113a006.
J. I. Brauman and L. K. Blair, “Gas-phase acidities of alcohols. Effects of alkyl groups”, J. Am. Chem. Soc., Vol.90, No.23, pp.6561–6562, Nov. 1968, doi: https://doi.org/10.1021/ja01025a083.
J. Tomasi, B. Mennucci and R. Cammi, “Quantum Mechanical Continuum Solvation Models”, Chem. Rev., Vol.105, No.8, pp.2999–3094, Aug. 2005, doi: https://doi.org/10.1021/cr9904009.
C. J. Cramer and D. G. Truhlar, “A Universal Approach to Solvation Modeling”, Acc. Chem. Res., Vol.41, No.6, pp.760–768, Jun. 2008, doi: https://doi.org/10.1021/ar800019z.
M. Medved’, S. Budzák, W. Bartkowiak, and H. Reis, “Solvent Effects on Molecular Electric Properties”, in Handbook of Computational Chemistry, J. Leszczynski, Ed. Dordrecht: Springer Netherlands, 2015, pp.1–54. doi: https://doi.org/10.1007/978-94-007-6169-8_44-1.
B. Mennucci, “Polarizable continuum model”, WIREs Comput. Mol. Sci., Vol.2, No.3, pp.386–404, May 2012, doi: https://doi.org/10.1002/wcms.1086.
E. G. Lewars, “Some ‘Special’ Topics: (Section 8.1) Solvation, (Section 8.2) Singlet Diradicals, (Section 8.3) A Note on Heavy Atoms and Transition Metals”, in Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, E. G. Lewars, Ed. Cham: Springer International Publishing, 2016, pp.565–612. doi: https://doi.org/10.1007/978-3-319-30916-3.8.
F. Gatti, Ed., Molecular Quantum Dynamics: From Theory to Applications, Berlin Heidelberg: Springer-Verlag, 2014. doi: https://doi.org/10.1007/978-3-642-45290-1.
“Molecular Electronic-Structure Theory — Wiley Online Books.” https://doi.org/10.1002/9781119019572 (accessed Aug. 05, 2021).
S. Maeda, Y. Harabuchi, M. Takagi, T. Taketsugu and K. Morokuma, “Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces”, Chem. Rec., Vol.16, No.5, pp.2232–2248, 2016, doi: https://doi.org/10.1002/tcr.201600043.
L.-P. Wang, A. Titov, R. McGibbon, F. Liu, V. S. Pande and T. J. Martínez, “Discovering chemistry with an ab initio nanoreactor”, Nat. Chem., Vol.6, No.12, pp.1044–1048, Dec. 2014, doi: https://doi.org/10.1038/nchem.2099.
G. Kiss, N. Çelebi-Ölçüm, R. Moretti, D. Baker and K. N. Houk, “Computational Enzyme Design”, Angew. Chem. Int. Ed., Vol.52, No.22, pp.5700–5725, 2013, doi: https://doi.org/10.1002/anie.201204077.
J. K. Nørskov, T. Bligaard, J. Rossmeisl and C. H. Christensen, “Towards the computational design of solid catalysts”, Nat. Chem., Vol.1, No.1, pp.37–46, Apr. 2009, doi: https://doi.org/10.1038/nchem.121.
E. G. Lewars, Computational Chemistry, Dordrecht: Springer Netherlands, 2011. doi: https://doi.org/10.1007/978-90-481-3862-3.
Acknowledgements
I am grateful to Dr Garima Jindal, Prof. Santanu Mukherjee and the students of my group (all from IISc) for their comments on reading a draft of this article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Jayashree Nagesh is a Ramanujan Faculty Fellow at the Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru. Her research interests include aggregate photophysics, singlet fission, photoprotection and noncovalent interactions in biological systems and developing fragment-based methods for photophysical problems.
Rights and permissions
About this article
Cite this article
Nagesh, J. Computers in Organic Chemistry. Reson 28, 255–277 (2023). https://doi.org/10.1007/s12045-023-1547-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12045-023-1547-y