[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Computers in Organic Chemistry

  • General Article
  • Published:
Resonance Aims and scope Submit manuscript

Abstract

Until about a decade or so, till the fast-paced development and usage of computers, organic chemistry students often chose experimental projects during an internship. Presently, there are software packages that solve quantum chemical equations and present the possibility of a ‘black-box’ type of approach to getting exposed to computational organic chemistry. Encouraging as this may seem, Indian university students can find the entry to and an understanding of computational chemistry daunting due to a lack of exposure to research. This article attempts to bridge the gap for such students by providing a gentle introduction to the field of quantum chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Suggested Reading

  1. S. M. Bachrach, Computational organic chemistry, Second edition, Hoboken, New Jersey: Wiley, 2014.

    Book  Google Scholar 

  2. D. Rowley and H. Steiner, “Kinetics of diene reactions at high temperatures”, Discuss. Faraday Soc., Vol.10, No.0, pp.198–213, Jan.1951, doi: https://doi.org/10.1039/DF9511000198.

    Article  Google Scholar 

  3. K. N. Houk, Y. Tsong, Lin and F. K. Brown, “Evidence for the concerted mechanism of the Diels—Alder reaction of butadiene with ethylene”, J. Am. Chem., Soc., Vol.108, No.3, pp.554–556, Feb.1986, doi: https://doi.org/10.1021/ja00263a059.

    Article  Google Scholar 

  4. R. D. Bach, J. J. W. McDouall, H. B. Schlegel, and G. J. Wolber, “Electronic factors influencing the activation barrier of the Diels—Alder reaction, An ab initio study”, J. Org. Chem., Vol.54, No.12, pp.2931–2935, Jun. 1989, doi: https://doi.org/10.1021/jo00273a029.

    Article  Google Scholar 

  5. R. V. Stanton and K. M. Merz, “Density functional transition states of organic and organometallic reactions”, J. Chem. Phys., Vol.100, No.1, pp.434–443, Jan. 1994, doi: https://doi.org/10.1063/1.466956.

    Article  Google Scholar 

  6. Y. Li and K. N. Houk, “Diels—Alder dimerization of 1,3-butadiene: an ab initio CASSCF study of the concerted and stepwise mechanisms and butadiene-ethylene revisited”, J. Am. Chem. Soc., Vol.115, No.16, pp.7478–7485, Aug. 1993, doi: https://doi.org/10.1021/ja00069a055.

    Article  Google Scholar 

  7. V. Barone and R. Arnaud, “Diels—Alder reactions: An assessment of quantum chemical procedures”, J. Chem. Phys., Vol.106, No.21, pp.8727–8732, Jun. 1997, doi: https://doi.org/10.1063/1.473933.

    Article  Google Scholar 

  8. H. ISOBE et al., “Extended Hartree—Fock (EHF) theory of chemical reactions VI: hybrid DFT and post-Hartree—Fock approaches for concerted and non-concerted transition structures of the Diels—Alder reaction”, Mol. Phys., Vol.100, No.6, pp.717–727, Mar. 2002, doi: https://doi.org/10.1080/00268970110092375.

    Article  Google Scholar 

  9. S. Sakai, “Theoretical Analysis of Concerted and Stepwise Mechanisms of Diels—Alder Reaction between Butadiene and Ethylene”, J. Phys. Chem. A, Vol.104, No.5, pp.922–927, Feb. 2000, doi: https://doi.org/10.1021/jp9926894.

    Article  Google Scholar 

  10. H. Lischka, E. Ventura and M. Dallos, “The Diels—Alder Reaction of Ethene and 1,3-Butadiene: An Extended Multireference ab initio Investigation”, ChemPhysChem, Vol.5, No.9, pp.1365–1371, 2004, doi: https://doi.org/10.1002/cphc.200400104.

    Article  Google Scholar 

  11. W. L. Jorgensen, D. Lim and J. F. Blake, “Ab initio study of Diels—Alder reactions of cyclopentadiene with ethylene, isoprene, cyclopentadiene, acrylonitrile, and methyl vinyl ketone”, J. Am. Chem. Soc., Vol.115, No.7, pp.2936–2942, Apr. 1993, doi: https://doi.org/10.1021/ja00060a048.

    Article  Google Scholar 

  12. P. G. Szalay and R. J. Bartlett, “Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI”, Chem. Phys. Lett., Vol.214, No.5, pp.481–488, Nov. 1993, doi: https://doi.org/10.1016/0009-2614(93)85670-J.

    Article  Google Scholar 

  13. B. Jursic and Z. Zdravkovski, “DFT study of the Diels—Alder reactions between ethylene with buta-1,3-diene and cyclopentadiene”, J. Chem. Soc. Perkin Trans. 2, Vol.0, No.6, pp.1223–1226, 1995, doi: https://doi.org/10.1039/P29950001223.

    Article  Google Scholar 

  14. E. Goldstein, B. Beno and K. N. Houk, “Density Functional Theory Prediction of the Relative Energies and Isotope Effects for the Concerted and Stepwise Mechanisms of the Diels—Alder Reaction of Butadiene and Ethylene”, J. Am. Chem. Soc., Vol.118, No.25, pp.6036–6043, Jan. 1996, doi: https://doi.org/10.1021/ja9601494.

    Article  Google Scholar 

  15. E. Kraka, A. Wu, and D. Cremer, “Mechanism of the Diels—Alder Reaction Studied with the United Reaction Valley Approach: Mechanistic Differences between Symmetry-Allowed and Symmetry-Forbidden Reactions,” J. Phys. Chem. A, Vol.107, No.42, pp.9008–9021, Oct. 2003, doi: https://doi.org/10.1021/jp030882z.

    Article  Google Scholar 

  16. V. A. Guner, K. S. Khuong, K. X. Houk, A. Chuma, and P. Pulay, “The Performance of the Handy/Cohen Functionals, OLYP and O3LYP, for the Computation of Hydrocarbon Pericyclic Reaction Activation Barriers”, J. Phys. Chem. A, Vol.108, No.15, pp.2959–2965, Apr. 2004, doi: https://doi.org/10.1021/jp0369286.

    Article  Google Scholar 

  17. R. D. J. Froese, S. Humbel, M. Svensson, and K. Morokuma, “IMOMO(G2MS): A New High-Level G2-Like Method for Large Molecules and Its Aplications to Diels—Alder Reactions”, J. Phys. Chem. A., Vol.101, No.2, pp.227–233, Jan. 1997, doi: https://doi.org/10.1021/jp963019q

    Article  Google Scholar 

  18. M. J. S. Dewar, “Multibond reactions cannot normally be synchronous”, J. Am. Chem. Soc., Vol.106, No.1, pp.209–219, Jan. 1984, doi: https://doi.org/10.1021/ja00313a042.

    Article  Google Scholar 

  19. J. Bigeleisen and M. G. Mayer, “Calculation of Equilibrium Constants for Isotopic Exchange Reactions”, J. Chem. Phys., Vol.15, No.5, pp.261–267, May 1947, doi: https://doi.org/10.1063/1.1746492.

    Article  Google Scholar 

  20. J. W. Storer, L. Raimondi and K. N. Houk, “Theoretical Secondary Kinetic Isotope Effects and the Interpretation of Transition State Geometries. 2. The Diels—Alder Reaction Transition State Geometry”, J. Am. Chem. Soc., Vol.116, No.21, pp.9675–9683, Oct. 1994, doi: https://doi.org/10.1021/ja00100a037.

    Article  Google Scholar 

  21. A. Strietwieser, R. H. Jagow, R. C. Fahey and S. Suzuki, “Kinetic isotope effects in the acetolyses of deuterated cyclopentyl tosylates”, J Am Chem Soc, Vol.80, p.2326, 1058.

  22. J. J. Gajewski, K. B. Peterson, J. R. Kagel, and Y. C. J. Huang, “Transition-state structure variation in the Diels—Alder reaction from secondary deuterium kinetic isotope effects. The reaction of nearly symmetrical dienes and dienophiles is nearly synchronous”, J. Am. Chem. Soc., Vol.111, No.25, pp.9078–9081, Dec. 1989, doi: https://doi.org/10.1021/ja00207a013.

    Article  Google Scholar 

  23. D. E. Van Sickle and J. Otto. Rodin, “The Secondary Deuterium Isotope Effect on the Diels—Alder Reaction”, J. Am. Chem. Soc., Vol.86, No.15, pp.3091–3094, Aug. 1964, doi: https://doi.org/10.1021/ja01069a024.

    Article  Google Scholar 

  24. D. A. Singleton and A. A. Thomas, “High-Precision Simultaneous Determination of Multiple Small Kinetic Isotope Effects at Natural Abundance”, J. Am. Chem. Soc., Vol.117, No.36, pp.9357–9358, Sep. 1995, doi: https://doi.org/10.1021/ja00141a030.

    Article  Google Scholar 

  25. B. R. Beno, K. N. Houk, and D. A. Singleton, “Synchronous or Asynchronous? An ‘Experimental’ Transition State from a Direct Comparison of Experimental and Theoretical Kinetic Isotope Effects for a Diels—Alder Reaction”, J. Am. Chem. Soc., Vol.118, No.41, pp.9984–9985, Jan. 1996, doi: https://doi.org/10.1021/ja9615278.

    Article  Google Scholar 

  26. R. Pariser and R. G. Parr, “A Semi-Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I.”, J. Chem. Phys., Vol.21, No.3, pp.466–471, Mar. 1953, doi: https://doi.org/10.1063/1.1698929.

    Article  Google Scholar 

  27. C. C. J. Roothaan, “New Developments in Molecular Orbital Theory”, Rev. Mod. Phys., Vol.23, No.2, pp.69–89, Apr. 1951, doi: https://doi.org/10.1103/RevMod-Phys.23.69.

    Article  Google Scholar 

  28. S. F. Boys, G. B. Cook, C. M. Reeves and I. Shavitt, “Automatic Fundamental Calculations of Molecular Structure”, Nature, Vol.178, No.4544, pp.1207–1209, Dec. 1956, doi: https://doi.org/10.1038/1781207a0.

    Article  Google Scholar 

  29. W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton and J. A. Pople, Gaussian 70. 1970.

  30. M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln”, Ann. Phys., Vol.389, No.20, pp.457–484, 1927, doi: https://doi.org/10.1002/andp.l9273892002.

    Article  Google Scholar 

  31. Frank L. Pilar, Elementary quantum chemistry, 2nd ed. Mineola, New York: Dover Publications, 1968.

    Google Scholar 

  32. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, 1988.

  33. M. Born, J. R. Oppenheimer and A. Physik, “On the Quantum Theory of Molecules”, p.32.

  34. A. Szabo, A. Szabó and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Macmillan, 1982.

  35. Sukarma Thareja and N. Sathyamurthy, “Utility of the Sorbie-Murrell functional form in fitting the potential energy surface for the ground and the lowest excited state of triatomic hydrogen (H3)”, J. Phys. Chem., Vol.91, No.7, pp.1790–1792, Mar. 1987, doi: https://doi.org/10.1021/j100291a022.

    Article  Google Scholar 

  36. P. Pechukas, “Transition State Theory”, Ann Rev Phys Chem, Vol.32, p.159, 1981.

    Article  Google Scholar 

  37. A. B. Callear, “Chapter 4 Basic RRKM Theory”, in Comprehensive Chemical Kinetics, Vol.24, pp.333–356, Elsevier, 1983. doi: https://doi.org/10.1016/S0069-8040(08)70206-1.

    Article  Google Scholar 

  38. D. G. Truhlar and B. C. Garrett, “Variational Transition State Theory”, Annu. Rev. Phys. Chem., Vol.35, p.159, 1984.

    Article  Google Scholar 

  39. L. S. Kassel, “The Dynamics of Unimolecular Reactions”, Chem. Rev., Vol.10, No.1, pp.11–25, Feb. 1932, doi: https://doi.org/10.1021/cr60035a002.

    Article  Google Scholar 

  40. O. K. Rice and H. C. Ramsperger, “Theories of unimolecular gas reactions at low pressures”, J. Am. Chem. Soc., Vol.49, No.7, pp.1617–1629, Jul. 1927, doi: https://doi.org/10.1021/ja01406a001.

    Article  Google Scholar 

  41. M. G. Evans and M. Polanyi, “Some applications of the transition state method to the calculation of reaction velocities, especially in solution”, Trans. Faraday Soc., Vol.31, No.0, pp.875–894, Jan. 1935, doi: https://doi.org/10.1039/TF9353100875.

    Article  Google Scholar 

  42. S. Arrhenius, “Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte.”, p.21.

  43. S. Arrhenius, “Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren.”, p.23.

  44. H. Eyring, “The Activated Complex in Chemical Reactions”, J. Chem. Phys., Vol.3, No.2, pp.107–115, Feb. 1935, doi: https://doi.org/10.1063/1.1749604.

    Article  Google Scholar 

  45. B. K. Carpenter, “Dynamic Matching: The Cause of Inversion of Configuration in the [1,3] Sigmatropic Migration?”, J. Am. Chem. Soc., Vol.117, No.23, pp.6336–6344, Jun. 1995, doi: https://doi.org/10.1021/ja00128a024.

    Article  Google Scholar 

  46. B. K. Carpenter, “Bimodal Distribution of Lifetimes for an Intermediate from a Quasiclassical Dynamics Simulation”, J. Am. Chem. Soc., Vol.118, No.42, pp.10329–10330, Jan. 1996, doi: https://doi.org/10.1021/ja9617707.

    Article  Google Scholar 

  47. https://gaussian.com/vib/.”

  48. A. V. Marenich, C. J. Cramer and D. G. Truhlar, “Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions”, J. Phys. Chem. B, Vol.113, No.18, pp.6378–6396, May 2009, doi: https://doi.org/10.1021/jp810292n.

    Article  Google Scholar 

  49. P. Beak, “Energies and alkylations of tautomeric heterocyclic compounds: old problems — new answers”, Acc. Chem. Res., Vol.10, No.5, pp.186–192, May 1977, doi: https://doi.org/10.1021/ar50113a006.

    Article  Google Scholar 

  50. J. I. Brauman and L. K. Blair, “Gas-phase acidities of alcohols. Effects of alkyl groups”, J. Am. Chem. Soc., Vol.90, No.23, pp.6561–6562, Nov. 1968, doi: https://doi.org/10.1021/ja01025a083.

    Article  Google Scholar 

  51. J. Tomasi, B. Mennucci and R. Cammi, “Quantum Mechanical Continuum Solvation Models”, Chem. Rev., Vol.105, No.8, pp.2999–3094, Aug. 2005, doi: https://doi.org/10.1021/cr9904009.

    Article  Google Scholar 

  52. C. J. Cramer and D. G. Truhlar, “A Universal Approach to Solvation Modeling”, Acc. Chem. Res., Vol.41, No.6, pp.760–768, Jun. 2008, doi: https://doi.org/10.1021/ar800019z.

    Article  Google Scholar 

  53. M. Medved’, S. Budzák, W. Bartkowiak, and H. Reis, “Solvent Effects on Molecular Electric Properties”, in Handbook of Computational Chemistry, J. Leszczynski, Ed. Dordrecht: Springer Netherlands, 2015, pp.1–54. doi: https://doi.org/10.1007/978-94-007-6169-8_44-1.

    Google Scholar 

  54. B. Mennucci, “Polarizable continuum model”, WIREs Comput. Mol. Sci., Vol.2, No.3, pp.386–404, May 2012, doi: https://doi.org/10.1002/wcms.1086.

    Article  Google Scholar 

  55. E. G. Lewars, “Some ‘Special’ Topics: (Section 8.1) Solvation, (Section 8.2) Singlet Diradicals, (Section 8.3) A Note on Heavy Atoms and Transition Metals”, in Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, E. G. Lewars, Ed. Cham: Springer International Publishing, 2016, pp.565–612. doi: https://doi.org/10.1007/978-3-319-30916-3.8.

    Chapter  Google Scholar 

  56. https://gaussian.com/population/.”

  57. https://gaussian.com/prop/.”

  58. https://manual.q-chem.com/4.4/chap-properties.html.”

  59. F. Gatti, Ed., Molecular Quantum Dynamics: From Theory to Applications, Berlin Heidelberg: Springer-Verlag, 2014. doi: https://doi.org/10.1007/978-3-642-45290-1.

    Google Scholar 

  60. “Molecular Electronic-Structure Theory — Wiley Online Books.” https://doi.org/10.1002/9781119019572 (accessed Aug. 05, 2021).

  61. S. Maeda, Y. Harabuchi, M. Takagi, T. Taketsugu and K. Morokuma, “Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces”, Chem. Rec., Vol.16, No.5, pp.2232–2248, 2016, doi: https://doi.org/10.1002/tcr.201600043.

    Article  Google Scholar 

  62. L.-P. Wang, A. Titov, R. McGibbon, F. Liu, V. S. Pande and T. J. Martínez, “Discovering chemistry with an ab initio nanoreactor”, Nat. Chem., Vol.6, No.12, pp.1044–1048, Dec. 2014, doi: https://doi.org/10.1038/nchem.2099.

    Article  Google Scholar 

  63. G. Kiss, N. Çelebi-Ölçüm, R. Moretti, D. Baker and K. N. Houk, “Computational Enzyme Design”, Angew. Chem. Int. Ed., Vol.52, No.22, pp.5700–5725, 2013, doi: https://doi.org/10.1002/anie.201204077.

    Article  Google Scholar 

  64. J. K. Nørskov, T. Bligaard, J. Rossmeisl and C. H. Christensen, “Towards the computational design of solid catalysts”, Nat. Chem., Vol.1, No.1, pp.37–46, Apr. 2009, doi: https://doi.org/10.1038/nchem.121.

    Article  Google Scholar 

  65. E. G. Lewars, Computational Chemistry, Dordrecht: Springer Netherlands, 2011. doi: https://doi.org/10.1007/978-90-481-3862-3.

    Book  Google Scholar 

Download references

Acknowledgements

I am grateful to Dr Garima Jindal, Prof. Santanu Mukherjee and the students of my group (all from IISc) for their comments on reading a draft of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayashree Nagesh.

Additional information

Jayashree Nagesh is a Ramanujan Faculty Fellow at the Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru. Her research interests include aggregate photophysics, singlet fission, photoprotection and noncovalent interactions in biological systems and developing fragment-based methods for photophysical problems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagesh, J. Computers in Organic Chemistry. Reson 28, 255–277 (2023). https://doi.org/10.1007/s12045-023-1547-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12045-023-1547-y

Keywords

Navigation