Abstract
To overcome the COVID-19 pandemic, the development of safe and effective vaccines is crucial. With the enormous information available on vaccine development for COVID-19, there are still grey areas to be considered when designing a potential vaccine. The rapid regulatory approval of nucleic acid-based vaccines was unique to the COVID-19; these vaccines were rapidly produced cost-effectively and with lesser risk of infectivity. Additionally, they demonstrated relative stability at room temperature (DNA). However, a comparative understanding of the immunogenic impact and efficacy of these vaccines is lacking. Immunogenicity is essential for developing and maintaining effective and long-lasting post-vaccination immunity to pathogenic microorganisms. This systematic review aims to assess and summarize the immunogenicity and protective efficacy of the nucleic acid-based vaccines against COVID-19. The Preferred Reporting Items for Systematic Reviews (PRISMA) recommendations were followed in this review. CASP tool was used for quality assessment of randomized controlled trials. All included studies employed a randomized control method, and the results demonstrated promising immune responses and effectiveness that provided high-level protection against COVID-19 infection. This study offers vital insights for advancing vaccine technology. Furthermore, it guides formulation, informs personalized vaccination strategies, and enhances global health preparedness, particularly in regions with limited vaccine access.
Graphical Abstract
Similar content being viewed by others
Data availability
Original data is available from the corresponding author upon request.
Abbreviations
- SARS-CoV-2-:
-
Severe acute respiratory syndrome coronavirus-2
- COVID-19:
-
Coronavirus disease 19
- ACE-2:
-
Angiotensin converting enzyme 2
- bAb:
-
Binding antibodies
- nAb:
-
Neutralizing antibodies
- DNA:
-
Deoxyribonucleic acid
- mRNA:
-
Messenger ribonucleic acid
- ELISA:
-
Enzyme-linked immunosorbent assay
- PRNT:
-
Plaque reduction neutralization test
- PVNT:
-
Pseudovirus neutralization test
- VE:
-
Vaccine efficacy
- CV:
-
Complete vaccination
- CI:
-
Confidence vaccination
- NR:
-
Nnot reported
- V. group:
-
Vaccine group
- P. group:
-
Placebo group
- INF-γ:
-
Interferon gamma
- CI:
-
Confidence interval
- EU:
-
ELISA Units
- SD:
-
Standard deviation of log10 titer value
References
Moore, S., (2021) History of COVID-19;1–7. Retrieved March 26, 2023, From https://www.news-medical.net/health/History-of-COVID-19.aspxaspx
World Health Organization (2023). Retrieved February 27, 2023, From https://covid19.who.int/
Hassanin, A., Grandcolas, P., & Veron, G. (2021). Covid-19: Natural or anthropic origin? Mammalia, 85(1), 1–7. https://doi.org/10.1515/mammalia-2020-0044
Lam, T. Y. T., Na, J., Ya-Wei, Z., Marcus, H. S., Jia-Fu, J., Hua-Chen, Z., Yi-Gang, T., Yong-Xia, S., Xue-Bing, N., Yun-Shi, L., Wen-Juan, L., Bao-Gui, J., Wei, W., Ting-Ting, Y., Kui, Z., Xiao-Ming, C., Jie, L., Guang-Qian, P., Xin, Q., & Wu-Chun, C. (2020). Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 583, 282–285. https://doi.org/10.1038/s41586-020-2169-0
Sun, P., Lu, X., Xu, C., Sun, W., & Pan, B. (2020). Understanding of COVID-19 based on current evidence. Journal of Medical Virology, 92, 548–551. https://doi.org/10.1002/jmv.25722
Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K., Wang, D., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—an update on the status. Military Medicine Research, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0
Bobdey, S., & Ray, S. (2020). Going viral—Covid-19 Impact assessment: A perspective beyond clinical practice. Retrieved April 28, 2023, from https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-585
Shah, V. K., Firmal, P., Alam, A., Ganguly, D., & Chattopadhyay, S. (2020). Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Frontiers in Immunology, 11, 1949. https://doi.org/10.3389/fimmu.2020.01949
Forni, G., & Mantovani, A. (2021). COVID-19 vaccines: Where we stand and challenges ahead. Cell Death & Differentiation, 28(2), 626–639. https://doi.org/10.1038/s41418-020-00720-9
Khobragade, A., Bhate, S., Ramaiah, V., Deshpande, S., Giri, K., Phophle, H., Supe, P., Godara, I., Revanna, R., Nagarkar, R., Sanmukhani, J., Dey, A., Rajanathan, T. M. C., Kansagra, K., & Koradia, P. (2022). Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): The interim efficacy results of a phase 3, randomized, double-blind, placebo-controlled study in India. The Lancet, 399, 1313–1321. https://doi.org/10.1016/S0140-6736(22)00151-9
Graña, C., Ghosn, L., Evrenoglou, T., Jarde, A., Minozzi, S., Bergman, H., Buckley, B. S., Probyn, K., Villanueva, G., Henschke, N., Bonnet, H., Assi, R., Menon, S., Marti, M., Devane, D., Mallon, P., Lelievre, J.-D., Askie, L. M., Kredo, T., & Boutron, I. (2022). Efficacy and safety of COVID-19 vaccines. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD015477
Sheridan, C. (2021). First COVID-19 DNA vaccine approved, others in hot pursuit. Nature Biotechnology, 39(12), 1479–1482. https://doi.org/10.1038/d41587-021-00023-5
GAVI. (2020). What are nucleic acid vaccines and how could they be used against COVID-19? Retrieved March 15, 2023, from https://www.gavi.org/vaccineswork/what-are-nucleic-acid-vaccines-and-how-could-they-be-used-against-covid-19
Moher, D., & Kamioka, H. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) statement. Japanese Pharmacology and Therapeutics, 4(1), 1. Retrieved from https://systematicreviewsjournal.biomedcentral.com/
Critical Appraisal Skills Programme (CASP). (2013). CASP randomized controlled trial standard checklist. CASP checklists Oxford, 1–7. Retrieved from http://www.casp-uk.net
Higgins, J. P. T., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., & Oxman, A. D. (2011). The cochrane collaboration’s tool for assessing risk of bias in randomized trials. BMJ. https://doi.org/10.1136/bmj.d5928
Maia, N., Tal, G., Alana, F. O., Adam, M. M., Limor, C., Evan, L. B., Roey, L., Chih-Ping, M., Yongfei, C., Jun, Z., Jared, E. F., Blake, M. H., Timothy, M. C., Bing, C., Aaron, G. S., Galit, A., Richelle, C. C., Edward, T. R., & Walt, D. R. (2020). Ultrasensitive high-resolution profiling of early seroconversion in patients with COVID-19. Nature Biomedical Engineering, 4(12), 1180–1187. https://doi.org/10.1038/s41551-020-00611-x
Amanat, F., Stadlbauer, D., Strohmeier, S., Nguyen, T. H. O., Chromikova, V., McMahon, M., Jiang, K., Arunkumar, G. A., Jurczyszak, D., Polanco, J., Bermudez-Gonzalez, M., Kleiner, G., Aydillo, T., Miorin, L., Fierer, D. S., Lugo, L. A., Kojic, E. M., Stoever, J., & Krammer, F. (2020). A serological assay to detect SARS-CoV-2 seroconversion in humans. Nature Medicine, 26(7), 1033–1036. https://doi.org/10.1038/s41591-020-0913-5
Food and Drug Administration Center for Biologics Evaluation and Research. (2020). Development and licensure of vaccines to prevent COVID-19, Guidance for industry. Retrieved February 15, 2023, from https://www.fda.gov/media/139638/download
Mulligan, M. J., Lyke, K. E., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Neuzil, K., Raabe, V., Bailey, R., Swanson, K. A., Li, P., Koury, K., Kalina, W., Cooper, D., Fontes-Garfias, C., Shi, P.-Y., Türeci, Ö., Tompkins, K. R., Edward, E. W., … Jansen, K. U. (2020). Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature, 586(7830), 589–593. https://doi.org/10.1038/s41586-020-2639-4
Baden, L. R., El Sahly, H. M., Essink, B., Follmann, D., Neuzil, K. M., August, A., Clouting, H., Fortier, G., Deng, W., Han, S., Zhao, X., Leav, B., Talarico, C., Girard, B., Paila, Y. D., Tomassini, J. E., Schödel, F., Pajon, R., Zhou, H., & Miller, J. (2021). Covid-19 in the phase 3 trial of mRNA-1273 during the delta-variant surge. medRxiv : The Preprint Server for Health Sciences. https://doi.org/10.1101/2021.09.17.21263624
El Sahly, H. M., Baden, L. R., Essink, B., Montefiori, D., McDermont, A., Rupp, R., Lewis, M., Swaminathan, S., Griffin, C., Fragoso, V., Miller, V. E., Girard, B., Paila, Y. D., Deng, W., Tomassini, J. E., Paris, R., Schödel, F., Das, R., August, A., & Pajon, R. (2022). Humoral immunogenicity of the mRNA-1273 vaccine in the phase 3 coronavirus efficacy (COVE) trial. The Journal of Infectious Diseases, 226(11), 1731–1742. https://doi.org/10.1093/infdis/jiac188
Thomas, S. J., Moreira, E. D., Jr., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Polack, F. P., Zerbini, C., Bailey, R., Swanson, K. A., Xu, X., Roychoudhury, S., Koury, K., Bouguermouh, S., Kalina, W. V., Cooper, D., Frenck, R. W., Jr., & Jansen, K. U. (2021). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 Months. New England Journal of Medicine, 385, 1761–1773. https://doi.org/10.1056/NEJMoa2110345
Sahin, U., Muik, A., Vogler, I., Derhovanessian, E., Kranz, L. M., Vormehr, M., Quandt, J., Bidmon, N., Ulges, A., Baum, A., Pascal, K. E., Maurus, D., Brachtendorf, S., Lörks, V., Sikorski, J., Koch, P., Hilker, R., Becker, D., Eller, A.-K., & Türeci, Ö. (2021). COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature, 595(7868), 572–577. https://doi.org/10.1038/s41586-021-03653-6
Kremsner, P. G., Mann, P., Kroidl, A., Leroux-Roels, I., Schindler, C., Gabor, J. J., Schunk, M., Leroux-Roels, G., Bosch, J. J., Fendel, R., Kreidenweiss, A., Velavan, T. P., Fotin-Mleczek, M., Mueller, S. O., Quintini, G., Schönborn-Kellenberger, O., Vahrenhorst, D., Verstraeten, T., Alves de Mesquita, M., & Oostvogels, L. (2021). Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2. Wien Klin Wochenschr, 133, 931–941. https://doi.org/10.1007/s00508-021-01922-y
Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Jr., Hammitt, L. L., & Gruber, W. C. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. New England Journal of Medicine, 383(27), 2603–2615. https://doi.org/10.1056/NEJMoa2034577
Mammen, P. M., Jr., Tebas, P., Agnes, J., Giffear, M., Kraynyak, K. A., Blackwood, E., Amante, D., Reuschel, E. L., Purwar, M., Christensen-Quick, A., Liu, N., Andrade, V. M., Carter, J., Garufi, G., Diehl, M. C., Sylvester, A., Morrow, M. P., Pezzoli, P., Kulkarni, A. J., & Humeau, L. M. (2021). Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of a randomized, blinded, placebo-controlled, Phase 2 clinical trial in adults at high risk of viral exposure. medRxiv. https://doi.org/10.1101/2021.05.07.21256652
Orozco, N. M., Noah, V., Alan, M., Talya, A., Lawrence, R., Yuko, A., Reuben, S., Queenie, H., Anne-Claude, G., Brad, S., Marcusson, Eric G., & Piyush, P. (2022). Phase Istudy of a SARS-CoV-2 mRNA vaccine PTX-COVID19-B. medRxiv. https://doi.org/10.1101/2022.05.06.22274690
Kremsner, P. G., Ahuad Guerrero, R. A., Arana-Arri, E., Aroca Martinez, G. J., Bonten, M., Chandler, R., Corral, G., De Block, E. J. L., Ecker, L., Gabor, J. J., Garcia Lopez, C. A., Gonzales, L., Granados González, M. A., Gorini, N., Grobusch, M. P., Hrabar, A. D., Junker, H., Kimura, A., & Lanata, C. F. (2021). Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): A randomized, observer-blinded, placebo-controlled, phase 2b/3 trial. The Lancet Infectious Diseases, 21(3), 329–340. https://doi.org/10.1016/S1473-3099(21)00677-0
World Health Organization. Vaccine efficacy, effectiveness and protection. (2022). Retrieved March 14, 2023, From https://www.who.int/news-room/feature-stories/detail/vaccine-efficacy-effectiveness-and-protection
Acknowledgements
The members and staff of the Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, Sokoto are highly appreciated for their various contributions to the success of this paper. The first author acknowledges CAMRET for being a beneficiary of its postgraduate scholarship award.
Funding
No grant was received for this review.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Karofi, D.H., Lawal, N., Bello, M.B. et al. Immunogenicity and Protective Efficacy of Nucleic Acid-Based Vaccines Against COVID-19: A Systematic Review. Mol Biotechnol 66, 3438–3448 (2024). https://doi.org/10.1007/s12033-023-00965-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-023-00965-y