[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A review on emerging targeted therapies for the management of metastatic colorectal cancers

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancers are among the most commonly found cancers over the world. In spite of the recent advancements in diagnosis and prognosis, the management of this metastatic condition remains a challenge. The utility of monoclonal antibodies in the healing of patients with colorectal cancer has opened a new chapter in the quest for newer therapies. The resistance to the standard treatment regimen made it mandatory to search for newer targets. Mutagenic alterations in the gene engaged in cellular differentiation and growth pathway have been the reason for resistance to treatment. The newer therapies target the various proteins and receptors involved in the signal transduction and down streaming pathways leading to cell proliferation. This review presents an insight into the newer targeted therapies for colorectal cancer involving tyrosine kinase blockers, epidermal growth factor receptors, vascular endothelial growth factor, immune checkpoint therapy, and BRAF inhibitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MAPK:

Mitogen-activated protein kinase

PI3K:

Phosphatidylinositol 3-kinase

MEK:

Mitogen-activated protein kinase

RAF:

Rapidly accelerated fibrosarcoma

mTOR:

Mammalian target of rapamycin

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer j clin. 2018;68(6):394–424.

    Google Scholar 

  2. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet (London, England). 2019;394(10207):1467–80.

    Article  PubMed  Google Scholar 

  3. Chaturvedi S, Pathak K. Chapter 24 - Nanoparticulate systems and their translation potential for breast cancer therapeutics. In: Dua K, Mehta M, Andreoli Pinto de Jesus T, Pont LG, Williams KA, Rathbone MJ, editors. Advanced drug delivery systems in the management of cancer. Cambridge: Academic Press; 2021. p. 299–318.

    Chapter  Google Scholar 

  4. Sharma DK, Goyal A, Chaturvedi S. Dietary inclusions and exclusions: preparation against cancer. Oncologie. 2021;22(4):213–34.

    Article  CAS  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: a cancer j clin. 2019;69(1):7–34.

    Google Scholar 

  6. Agrawal N, Mujwar S, Goyal A, Gupta JK. Phytoestrogens as potential antiandrogenic agents against prostate cancer: an in silico analysis. Lett Drug Des Discovery. 2022;19(1):69–78.

    Article  CAS  Google Scholar 

  7. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat rev Dis primers. 2015;1:15065.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713–32.

    Article  PubMed  Google Scholar 

  9. Sánchez-Gundín J, Fernández-Carballido AM, Martínez-Valdivieso L, Barreda-Hernández D, Torres-Suárez AI. New trends in the therapeutic approach to metastatic colorectal cancer. Int J Med Sci. 2018;15(7):659–65.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brown KGM, Solomon MJ, Mahon K, O’Shannassy S. Management of colorectal cancer. BMJ (Clin res ed). 2019;366: l4561.

    Google Scholar 

  11. Chaturvedi S, Garg A, Verma A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: an insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J Drug Deliv Sci Technol. 2020;59: 101899.

    Article  CAS  Google Scholar 

  12. Miyo M, Kato T, Yoshino T, Yamanaka T, Bando H, Satake H, et al. Protocol of the QUATTRO-II study: a multicenter randomized phase II study comparing CAPOXIRI plus bevacizumab with FOLFOXIRI plus bevacizumab as a first-line treatment in patients with metastatic colorectal cancer. BMC Cancer. 2020;20(1):687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol. 2018;834:188–96.

    Article  CAS  PubMed  Google Scholar 

  14. DeStefanis RA, Kratz JD, Emmerich PB, Deming DA. Targeted therapy in metastatic colorectal cancer: current standards and novel agents in review. Curr Colorectal Cancer Rep. 2019;15(2):61–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nappi A, Berretta M, Romano C, Tafuto S, Cassata A, Casaretti R, et al. Metastatic colorectal cancer: role of target therapies and future perspectives. Curr Cancer Drug Targets. 2018;18(5):421–9.

    Article  CAS  PubMed  Google Scholar 

  16. Baraibar I, Ros J, Mulet N, Salvà F, Argilés G, Martini G, et al. Incorporating traditional and emerging biomarkers in the clinical management of metastatic colorectal cancer: an update. Expert Rev Mol Diagn. 2020;20(7):653–64.

    Article  CAS  PubMed  Google Scholar 

  17. Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J clin oncol : official j American Soc Clin Oncol. 2004;22(1):23–30.

    Article  CAS  Google Scholar 

  18. The FDA approves drugs for colorectal cancer, lung cancer. FDA consumer.2007; 41(1):5.

  19. FDA approves aflibercept Zaltrap for metastatic colorectal cancer. Oncology Williston Park. 2012: 26(9): 842-73

  20. FDA approves regorafenib (Stivarga) for metastatic colorectal cancer. Oncology (Williston Park, NY). 2012: 26(10): 896

  21. Venook AP. The value and effectiveness of angiogenesis inhibitors for colorectal cancer. Clin adv hematol oncol : H&O. 2015;13(9):561–3.

    Google Scholar 

  22. Geantă M, Cioroboiu C. The FDA changed everything. Biomed hub. 2017;2(Suppl 1):52–4.

    PubMed  PubMed Central  Google Scholar 

  23. Ciombor KK, Goldberg RM. Hypermutated tumors and immune checkpoint inhibition. Drugs. 2018;78(2):155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garcia CR, Jayswal R, Adams V, Anthony LB, Villano JL. Multiple sclerosis outcomes after cancer immunotherapy. Clin trans oncol: official pub Federation Spanish Oncol Soc National Cancer Institute Mexico. 2019;21(10):1336–42.

    Article  Google Scholar 

  25. Valeri N. Streamlining detection of fusion genes in colorectal cancer: having “Faith” in precision oncology in the (Tissue) “Agnostic” Era. Can Res. 2019;79(6):1041–3.

    Article  CAS  Google Scholar 

  26. Mullard A. FDA notches up third tissue-agnostic cancer approval. Nat Rev Drug Discovery. 2019;18(10):737.

    PubMed  Google Scholar 

  27. Koumaki K, Kontogianni G, Kosmidou V, Pahitsa F, Kritsi E, Zervou M, et al. BRAF paradox breakers PLX8394, PLX7904 are more effective against BRAFV600Ε CRC cells compared with the BRAF inhibitor PLX4720 and shown by detailed pathway analysis. Biochim Biophys Acta. 2021;1867(4): 166061.

    Article  CAS  Google Scholar 

  28. Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin cancer res : official j American Association Cancer Res. 2001;7(10):2958–70.

    CAS  Google Scholar 

  29. Recondo G Jr, Díaz-Cantón E, de la Vega M, Greco M, Recondo G Sr, Valsecchi ME. Advances and new perspectives in the treatment of metastatic colon cancer. World j gastrointest oncol. 2014;6(7):211–24.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(10):1065–75.

    Article  CAS  PubMed  Google Scholar 

  31. Bokemeyer C, Bondarenko I, Hartmann JT, de Braud F, Schuch G, Zubel A, et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann oncol: official j European Soci Med Oncol. 2011;22(7):1535–46.

    Article  CAS  Google Scholar 

  32. Chabner B, Barnes J, Neal J, Mujagic H, Sequist L, Wilson W, et al. Bruce A. Chabner, Jeffrey Barnes, Joel Neal, Hamza Mujagic, LeciaSequist, Wyndham Wilson, and Dan L. Longo: Chapter 62 TargetedTherapies: Tyrosine Kinase Inhibitors, Monoclonal antibodies, andCytokines, in: Goodman and Gillman, The Pharmacological Basis ofTherapeutics, McGraw-Hill Co., 20102011.

  33. Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370(6490):27–532.

    Article  Google Scholar 

  34. Van Cutsem E, Köhne CH, Láng I, Folprecht G, Nowacki MP, Cascinu S, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J clin oncol: official j American Soc Clin Oncol. 2011;29(15):2011–9.

    Article  Google Scholar 

  35. Price TJ, Peeters M, Kim TW, Li J, Cascinu S, Ruff P, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol. 2014;15(6):569–79.

    Article  CAS  PubMed  Google Scholar 

  36. Kim TW, Elme A, Kusic Z, Park JO, Udrea AA, Kim SY, et al. A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer. Br J Cancer. 2016;115(10):1206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J clin oncol : official j American Soc Clin Oncol. 2004;22(7):1201–8.

    Article  CAS  Google Scholar 

  38. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J clin oncol : official j American Soc Clin Oncol. 2010;28(31):4697–705.

    Article  CAS  Google Scholar 

  39. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.

    Article  CAS  PubMed  Google Scholar 

  40. Tintelnot J, Baum N, Schultheiß C, Braig F, Trentmann M, Finter J, et al. Nanobody targeting of epidermal growth factor receptor (EGFR) ectodomain variants overcomes resistance to therapeutic EGFR antibodies. Mol Cancer Ther. 2019;18(4):823–33.

    Article  CAS  PubMed  Google Scholar 

  41. Roovers RC, Vosjan MJ, Laeremans T, el Khoulati R, de Bruin RC, Ferguson KM, et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int J Cancer. 2011;129(8):2013–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol. 2017;8:1603.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rashidi SK, Mousavi Gargari SL, Ebrahimizadeh W. Targeting colorectal cancer cell lines using nanobodies; AgSK1as a potential target. Iran J Biotechnol. 2017;15(2):78–86.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lindhofer H, Mocikat R, Steipe B, Thierfelder S. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a singlestep purification of bispecific antibodies. J immunol (Baltimore, Md: 1950). 1995;155(1):219–25.

    Article  CAS  Google Scholar 

  45. Riechelmann R, Grothey A. Antiangiogenic therapy for refractory colorectal cancer: current options and future strategies. Therap adv med oncol. 2017;9(2):106–26.

    Article  CAS  Google Scholar 

  46. Senger DR. Vascular endothelial growth factor: much more than an angiogenesis factor. Mol Biol Cell. 2010;21(3):377–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Manley PW, Bold G, Brüggen J, Fendrich G, Furet P, Mestan J, et al. Advances in the structural biology, design and clinical development of VEGF-R kinase inhibitors for the treatment of angiogenesis. Biochem Biophys Acta. 2004;1697(1–2):17–27.

    CAS  PubMed  Google Scholar 

  48. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.

    Article  CAS  PubMed  Google Scholar 

  49. Saltz LB, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J clin oncol: official j American Soc Clin Oncol. 2008;26(12):2013–9.

    Article  CAS  Google Scholar 

  50. Passardi A, Nanni O, Tassinari D, Turci D, Cavanna L, Fontana A, et al. Effectiveness of bevacizumab added to standard chemotherapy in metastatic colorectal cancer: final results for first-line treatment from the ITACa randomized clinical trial. Ann oncol: official j European Soc Med Oncol. 2015;26(6):1201–7.

    Article  CAS  Google Scholar 

  51. Bennouna J, Sastre J, Arnold D, Österlund P, Greil R, Van Cutsem E, et al. Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol. 2013;14(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  52. Giantonio BJ, Catalano PJ, Meropol NJ, O’Dwyer PJ, Mitchell EP, Alberts SR, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern cooperative oncology group study E3200. J clin oncol: official j American Soc Clin Oncol. 2007;25(12):1539–44.

    Article  CAS  Google Scholar 

  53. Venook A, Niedzwiecki D, Lenz H-J, Innocenti F, Peterson M, O’Neil B, et al. CALGB/SWOG 80405: Phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab (BV) or cetuximab (CET) for patients (pts) with KRAS wild-type (wt) untreated metastatic adenocarcinoma of the colon or rectum (MCRC). J Clin Oncol. 2014;32:3.

    Article  Google Scholar 

  54. Wang TF, Lockhart AC. Aflibercept in the treatment of metastatic colorectal cancer. Clin Med Insights Oncol. 2012;6:19–30.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Garcia-Carbonero R, Rivera F, Maurel J, Ayoub JP, Moore MJ, Cervantes A, et al. An open-label phase II study evaluating the safety and efficacy of ramucirumab combined with mFOLFOX-6 as first-line therapy for metastatic colorectal cancer. Oncologist. 2014;19(4):350–1.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tabernero J, Yoshino T, Cohn AL, Obermannova R, Bodoky G, Garcia-Carbonero R, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 2015;16(5):499–508.

    Article  CAS  PubMed  Google Scholar 

  57. Jitawatanarat P, Wee W. Update on antiangiogenic therapy in colorectal cancer: aflibercept and regorafenib. J gastrointest oncol. 2013;4(2):231–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Köhne C-H, Bajetta E, Lin E, Cutsem E, Hecht J, Douillard J, et al. Results of an interim analysis of a multinational randomized, double-blind, phase III study in patients (pts) with previously treated metastatic colorectal cancer (mCRC) receiving FOLFOX4 and PTK787/ZK 222584 (PTK/ZK) or placebo (CONFIRM 2). J Clin Oncol. 2006;24:3508.

    Article  Google Scholar 

  59. Bhargava P, Robinson MO. Development of second-generation VEGFR tyrosine kinase inhibitors: current status. Curr Oncol Rep. 2011;13(2):103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, et al. Regorafenib (BAY 73–4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129(1):245–55.

    Article  CAS  PubMed  Google Scholar 

  61. Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet (London, England). 2013;381(9863):303–12.

    Article  CAS  PubMed  Google Scholar 

  62. Comprehensive molecular characterization of human colon and rectal cancer. 2012 Nature. 487(7407): 330–7

  63. Marx AH, Burandt EC, Choschzick M, Simon R, Yekebas E, Kaifi JT, et al. Heterogenous high-level HER-2 amplification in a small subset of colorectal cancers. Hum Pathol. 2010;41(11):1577–85.

    Article  CAS  PubMed  Google Scholar 

  64. Bertotti A, Migliardi G, Galimi F, Sassi F, Torti D, Isella C, et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1(6):508–23.

    Article  CAS  PubMed  Google Scholar 

  65. Yonesaka K, Zejnullahu K, Okamoto I, Satoh T, Cappuzzo F, Souglakos J, et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci trans med. 2011;3(99):99ra86.

    Article  Google Scholar 

  66. Valtorta E, Martino C, Sartore-Bianchi A, Penaullt-Llorca F, Viale G, Risio M, et al. Assessment of a HER2 scoring system for colorectal cancer results from a validation study. Modern pathol official j United States Canadian Academy Pathol, Inc. 2015;28(11):1481–9.

    Article  CAS  Google Scholar 

  67. Sartore-Bianchi A, Trusolino L, Martino C, Bencardino K, Lonardi S, Bergamo F, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(6):738–46.

    Article  CAS  PubMed  Google Scholar 

  68. Strickler J, Zemla T, Ou FS, Cercek A, Wu C, Sanchez F, et al. 527PDTrastuzumab and tucatinib for the treatment of HER2 amplified metastatic colorectal cancer (mCRC): Initial results from the MOUNTAINEER trial. Ann Oncol. 2019. https://doi.org/10.1093/annonc/mdz246.005.

    Article  PubMed  Google Scholar 

  69. Tournigand C, Samson B, Scheithauer W. Bevacizumab (Bev) with or without erlotinib as maintenance therapy, following induction first-line chemotherapy plus Bev, in patients (pts) with metastatic colorectal cancer (mCRC): Efficacy and safety results of the International GERCOR DREAM phase III trial. J Clin Oncol. 2012. https://doi.org/10.1200/jco.2012.30.18_suppl.lba3500.

    Article  PubMed  Google Scholar 

  70. Nalli M, Puxeddu M, La Regina G, Gianni S, Silvestri R. Emerging therapeutic agents for colorectal cancer. Molecules (Basel, Switzerland). 2021;26:7463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Taieb J, Borg C, Lecomte T, Lepère C, Chatellier T, Smith D, et al. Masitinib plus FOLFIRI for second line treatment of metastatic colorectal cancer: An open label phase Ib/II trial. J Clin Oncol. 2015;33:3526.

    Article  Google Scholar 

  72. Hilberg F, Tontsch-Grunt U, Baum A, Le AT, Doebele RC, Lieb S, et al. Triple angiokinase inhibitor nintedanib directly Inhibits tumor cell growth and induces tumor shrinkage via blocking oncogenic receptor tyrosine kinases. J Pharmacol Exp Ther. 2018;364(3):494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Van Cutsem E, Yoshino T, Lenz HJ, Lonardi S, Falcone A, Limón ML, et al. Nintedanib for the treatment of patients with refractory metastatic colorectal cancer (LUME-Colon 1): a phase III, international, randomized, placebo-controlled study. Ann oncol: official j European Soc Med Oncol. 2018;29(9):1955–63.

    Article  Google Scholar 

  74. Li J, Qin S, Xu RH, Shen L, Xu J, Bai Y, et al. Effect of Fruquintinib vs Placebo on overall survival in patients with previously treated metastatic colorectal cancer: the FRESCO randomized clinical trial. JAMA. 2018;319(24):2486–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bendell JC, Joseph M, Barnes K, Mainwaring M, Shipley D, Reddy C, et al. A Phase-2 trial of single agent axitinib as maintenance therapy following first-line treatment with modified FOLFOX/Bevacizumab in patients with metastatic colorectal cancer. Cancer Invest. 2017;35(6):386–92.

    Article  CAS  PubMed  Google Scholar 

  76. Wang G, Huang Y, Wu Z, Zhao C, Cong H, Ju S, et al. KRAS-mutant colon cancer cells respond to combined treatment of ABT263 and axitinib. Biosci rep. 2019;39:3.

    Google Scholar 

  77. Higgins B, Kolinsky K, Schostack K, Bollag G, Lee R, Su F, et al. Efficacy of vemurafenib (V), a selective V600E BRAF inhibitor, as monotherapy or in combination with erlotinib (Erl) or erbitux (Erb) and irinotecan (Iri) doublets and triplets in a colorectal cancer (CRC) xenograft model. J Clin Oncol. 2012;30:494.

    Article  Google Scholar 

  78. Hong DS, Morris VK, El Osta B, Sorokin AV, Janku F, Fu S, et al. Phase IB study of Vemurafenib in combination with irinotecan and Cetuximab in patients with metastatic colorectal cancer with BRAFV600E mutation. Cancer Discov. 2016;6(12):1352–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kefford R, Miller W, Tan D, Sullivan R, Long G, Dienstmann R, et al. Preliminary results from a phase Ib/II, open-label, dose-escalation study of the oral BRAF inhibitor LGX818 in combination with the oral MEK1/2 inhibitor MEK162 in BRAF V600-dependent advanced solid tumors. J Clin Oncol. 2013;31:9029.

    Article  Google Scholar 

  80. Sullivan RJ, Weber J, Patel S, Dummer R, Carlino MS, Tan DSW, et al. A phase Ib/II study of the BRAF inhibitor encorafenib plus the MEK inhibitor binimetinib in patients with BRAF(V600E/K) -mutant solid tumors. Clin cancer res: official j American Association Cancer Res. 2020;26(19):5102–12.

    Article  CAS  Google Scholar 

  81. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T, et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med. 2019;381(17):1632–43.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang P, Kawakami H, Liu W, Zeng X, Strebhardt K, Tao K, et al. Targeting CDK1 and MEK/ERK overcomes apoptotic resistance in BRAF-mutant human colorectal cancer. Mol Cancer Res. 2017;16:0404–2017.

    Article  Google Scholar 

  83. Hochster HS, Uboha N, Messersmith W, Gold PJ, BH ON, Cohen D, et al. Phase II study of selumetinib (AZD6244, ARRY-142886) plus irinotecan as second-line therapy in patients with K-RAS mutated colorectal cancer. Cancer chemother pharmacol. 2015;75(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  84. Belli V, Matrone N, Napolitano S, Migliardi G, Cottino F, Bertotti A, et al. Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models. J exp clin cancer res: CR. 2019;38(1):236.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Krah S, Kolmar H, Becker S, Zielonka S. Engineering IgG-Like bispecific antibodies-an overview. Antibodies (Basel, Switzerland). 2018;7(3):28.

    CAS  PubMed  Google Scholar 

  86. Sebastian M, Kuemmel A, Schmidt M, Schmittel A. Catumaxomab: a bispecific trifunctional antibody. Drugs today (Barcelona, Spain: 1998). 2009;45(8):589–97.

    Article  CAS  Google Scholar 

  87. Przepiorka D, Ko CW, Deisseroth A, Yancey CL, Candau-Chacon R, Chiu HJ, et al. FDA approval: blinatumomab. Clin cancer res: official j American Association Cancer Res. 2015;21(18):4035–9.

    Article  CAS  Google Scholar 

  88. Schaefer G, Haber L, Crocker LM, Shia S, Shao L, Dowbenko D, et al. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell. 2011;20(4):472–86.

    Article  CAS  PubMed  Google Scholar 

  89. Hill AG, Findlay MP, Burge ME, Jackson C, Alfonso PG, Samuel L, et al. Phase II study of the dual EGFR/HER3 inhibitor Duligotuzumab (MEHD7945A) versus Cetuximab in combination with FOLFIRI in second-line RAS wild-type metastatic colorectal cancer. Clin cancer res: official j American Association Cancer Res. 2018;24(10):2276–84.

    Article  CAS  Google Scholar 

  90. Azadi A, Golchini A, Delazar S, Abarghooi Kahaki F, Dehnavi SM, Payandeh Z, et al. Recent advances on immune targeted therapy of colorectal cancer using bi-specific antibodies and therapeutic vaccines. Biol Procedures Online. 2021;23(1):13.

    Article  CAS  Google Scholar 

  91. Mishra R, Patel H, Alanazi S, Yuan L, Garrett JT. HER3 signaling and targeted therapy in cancer. Oncol Rev. 2018;12(1):355.

    PubMed  PubMed Central  Google Scholar 

  92. Ackerman ME, Chalouni C, Schmidt MM, Raman VV, Ritter G, Old LJ, et al. A33 antigen displays persistent surface expression. Cancer immunol, immunother: CII. 2008;57(7):1017–27.

    Article  CAS  PubMed  Google Scholar 

  93. Moore PA, Shah K, Yang Y, Alderson R, Roberts P, Long V, et al. Development of MGD007, a gpA33 x CD3-bispecific DART protein for T-cell immunotherapy of metastatic colorectal cancer. Mol Cancer Ther. 2018;17(8):1761–72.

    Article  CAS  PubMed  Google Scholar 

  94. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020;383(23):2207–18.

    Article  PubMed  Google Scholar 

  97. Sur D, Havasi A, Cainap C, Samasca G, Burz C, Balacescu O, et al. Chimeric antigen receptor T-cell therapy for colorectal cancer. J clin med. 2020;9(1):182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schmoll H-J, Wittig B, Arnold D, Riera-Knorrenschild J, Nitsche D, Kroening H, et al. Maintenance treatment with the immunomodulator MGN1703, a Toll-like receptor 9 (TLR9) agonist, in patients with metastatic colorectal carcinoma and disease control after chemotherapy: a randomised, double-blind, placebo-controlled trial. J Cancer Res Clin Oncol. 2014;140(9):1615–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grothey A, Shah M, Yoshino T, Cutsem E, Taieb J, Xu R, et al. CanStem303C trial: A phase III study of napabucasin (BBI-608) in combination with 5-fluorouracil (5-FU), leucovorin, irinotecan (FOLFIRI) in adult patients with previously treated metastatic colorectal cancer (mCRC). J Clin Oncol. 2017;35:TPS3619.

    Article  Google Scholar 

  100. Yan S-CB, Walgren RA. Combination of ramucirumab and merestinib for use in treatment of colorectal cancer. Google Patents; 2019.

  101. Vlassak S, Kuboki Y, Sato A, Yoshino T. Pharmaceutical combination of nintedanib, trifluridine and tipiracil for treating colorectal cancer. Google Patents; 2017.

  102. Röder H, Tsypin M, Grigorieva J. Selection of colorectal cancer patients for treatment with drugs targeting EGFR pathway. Google Patents; 2010.

Download references

Acknowledgements

The authors are thankful to the Institute of Pharmaceutical Research (IPR) GLA University, Mathura, for providing the necessary facilities.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have made very large contributions to designing the work, drafting or revising the manuscript, and approving the final version of the manuscript to be published.

Corresponding author

Correspondence to Rohitas Deshmukh.

Ethics declarations

Conflict of interest

The author reports no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, R., Prajapati, M. & Harwansh, R.K. A review on emerging targeted therapies for the management of metastatic colorectal cancers. Med Oncol 40, 159 (2023). https://doi.org/10.1007/s12032-023-02020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02020-x

Keywords

Navigation