[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Molecular targets and therapeutics in chemoresistance of triple-negative breast cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer (BC), which shows immunohistochemically negative expression of hormone receptor i.e., Estrogen receptor and Progesterone receptor along with the absence of Human Epidermal Growth Factor Receptor-2 (HER2/neu). In Indian scenario the prevalence of BC is 26.3%, whereas, in West Bengal the cases are of 18.4%. But the rate of TNBC has increased up to 31% and shows 27% of total BC. Conventional chemotherapy is effective only in the initial stages but with progression of the disease the effectivity gets reduced and shown almost no effect in later or advanced stages of TNBC. Thus, TNBC patients frequently develop resistance and metastasis, due to its peculiar triple-negative nature most of the hormonal therapies also fails. Development of chemoresistance may involve various factors, such as, TNBC heterogeneity, cancer stem cells (CSCs), signaling pathway deregulation, DNA repair mechanism, hypoxia, and other molecular factors. To overcome the challenges to treat TNBC various targets and molecules have been exploited including CSCs modulator, drug efflux transporters, hypoxic factors, apoptotic proteins, and regulatory signaling pathways. Moreover, to improve the targets and efficacy of treatments researchers are emphasizing on targeted therapy for TNBC. In this review, an effort has been made to focus on phenotypic and molecular variations in TNBC along with the role of conventional as well as newly identified pathways and strategies to overcome challenge of chemoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

TNBC:

Triple-negative breast cancer

TN:

Triple-negative

ER:

Estrogen receptor

PR:

Progesterone receptor

HER2/neu:

Human epidermal growth factor receptor-2

HR:

Hormone receptor

AR:

Androgen receptor

CSC:

Cancer stem cell

TP53/p53:

Tumor-suppressor protein-53

ITH:

Intra-tumor heterogeneity

LAR:

Luminal androgen receptor

M:

Mesenchymal

MSL:

Mesenchymal stem-like

IM:

Immunomodulatory

BL1:

Basal-like 1

BL2:

Basal-like 2

pCR:

Pathological complete response

NACT:

Neo-adjuvant chemotherapy

PI3K:

Phosphoinositol 3-kinase

PI3KCA:

Phosphoinositol 3-kinase CA

PAM:

PI3k/AKT/mTOR

PTEN:

Phosphatase and Tensin homolog

mTOR:

Mammalian target of rapamycin

AKT:

Ak strain transforming

INPP4B:

Inositol polyphosphate 4-phosphatase type II B

PARP:

Poly ADP ribose polymerase 1

BRCA1/2:

Breast cancer gene 1/2

CTLA4:

Cytotoxic T-lymphocyte-associated protein 4

Mabs:

Monoclonal antibodies

NGS:

Next-generation sequencing

BCCC:

Breast cancer cell clusters

ABC:

ATP-binding cassette

MRP:

Multidrug-resistant protein

BCRP:

Breast cancer resistance protein

TGF-β:

Transforming growth factor β

RTK:

Receptor tyrosine kinases

GSI:

G-protein specific inhibitor

Hh:

Hedgehog

PTCH:

Patched Hh

SMO:

Smoothened Hh

SHh:

Sonic Hedgehog

GLI:

Glioma-associated oncogene transcription factors

CCC:

Cadherin–Catenin-Complex

Wnt/β-catenin:

Wingless-related integration site 1 protein/Catenin β 1 protein

Nek2B:

NIMA-related kinase X

FZD6:

Frizzled family protein 6

LRP6:

Low-density lipoprotein receptor-related protein 6

LINP1:

Long noncoding RNA

CHEK2:

Cell cycle checkpoint kinase 2

TUFT1:

Tuftelin-1

Rac1:

Ras-related C3 botulinum toxin substrate 1

GTP:

Guanosine triphosphate

RelA:

REL-associated protein

DUSP1:

Dual specificity protein phosphatase 1

HIF1:

Hypoxia-induced factor-1

ECM:

Extracellular matrix

P4HA1:

Collagen prolyl 4-hydroxylase 1

α-KG:

Alpha-ketoglutarate

ROS:

Reactive oxygen species

C1QBP:

Complement 1q binding protein

PTX:

Paclitaxel

IC50:

Half-maximal inhibitory concentration

HMGA1:

High-mobility groupA1

AUR K A:

Aurora kinase A

MELK:

Maternal embryonic leucine zipper kinase

WT-p53:

Wild-type p53

RhoA:

Ras homolog family member A

IκB-α:

Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha

MDM2:

Mouse double minute 2 homolog

pRB:

Retinoblastoma protein

RASSF1A:

Ras association domain family 1A

APC/Cdc20:

Anaphase-promoting complex/cell division cycle protein 20 homolog

FOXO:

Forkhead box O

YAP:

Yes-associated protein

MST1/2:

Macrophage-stimulating 1/2

LATS1/2:

Large tumor-suppressor kinase 1/2

TrCP:

Transducin repeat containing protein

SRGN:

Serglycin

ITGA5:

Integrin alpha-5 precursor protein

FAK:

Focal adhesion kinase

CREB:

CAMP response element-binding protein

TEAD-1:

Transcriptional enhanced associate domain-1

RUNX1:

Runt-related transcription factor-1

HDAC2:

Histone deacetylase-2

CD44+ :

Cell surface adhesion receptor 44+

CD24−:

Cell surface adhesion receptor 24−

CERK:

Ceramide kinase

C-1-P:

Ceramide-1-phosphate

SER:

Smooth endoplasmic reticulum

Raf:

Rapidly accelerated fibrosarcoma protein

MEK:

Mitogen activated protein kinase2

ERK:

Extracellular signal regulated protein kinase

References

  1. Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    PubMed  Google Scholar 

  2. Dent R, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15):4429–34.

    PubMed  Google Scholar 

  3. Damaskos C, et al. Triple-negative breast cancer: the progress of targeted therapies and future tendencies. Anticancer Res. 2019;39(10):5285–96.

    CAS  PubMed  Google Scholar 

  4. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.

    CAS  PubMed  Google Scholar 

  5. Shen M, et al. A review of current progress in triple-negative breast cancer therapy. Open Med. 2020;15(1):1143–9.

    CAS  Google Scholar 

  6. Kim C, et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell. 2018;173(4):879–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liedtke C, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–81.

    PubMed  Google Scholar 

  8. Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge. Cells. 2019;8(9):957.

    PubMed Central  Google Scholar 

  9. Balko JM, et al. Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat Med. 2012;18(7):1052–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yates LR, et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med. 2015;21(7):751.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao R, et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat Genet. 2016;48(10):1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Carey LA, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13(8):2329–34.

    CAS  PubMed  Google Scholar 

  13. Shao F, Sun H, Deng C-X. Potential therapeutic targets of triple-negative breast cancer based on its intrinsic subtype. Oncotarget. 2017;8(42):73329.

    PubMed  PubMed Central  Google Scholar 

  14. Lehmann BD, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121(7):2750–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin L, et al. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):1–13.

    Google Scholar 

  16. Lehmann BD, et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 2014;16(4):1–14.

    Google Scholar 

  17. Loibl S, et al. Androgen receptor expression in primary breast cancer and its predictive and prognostic value in patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2011;130(2):477–87.

    CAS  PubMed  Google Scholar 

  18. Masuda H, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533–40.

    CAS  PubMed  Google Scholar 

  19. Echavarria I, et al. Pathological response in a triple-negative breast cancer cohort treated with neoadjuvant carboplatin and docetaxel according to Lehmann’s refined classification. Clin Cancer Res. 2018;24(8):1845–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Burstein MD, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98.

    CAS  PubMed  Google Scholar 

  21. Marty B, et al. Frequent PTEN genomic alterations and activated phosphatidylinositol 3-kinase pathway in basal-like breast cancer cells. Breast Cancer Res. 2008;10(6):1–15.

    Google Scholar 

  22. Engelmann K, Shen H, Finn OJ. MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Can Res. 2008;68(7):2419–26.

    CAS  Google Scholar 

  23. Wang S, Yang D, Lippman ME. Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Seminars Oncol. 2003;30:133.

    CAS  Google Scholar 

  24. Tutt A, et al. Oral poly (ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–44.

    CAS  PubMed  Google Scholar 

  25. Vonderheide RH, et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res. 2010;16(13):3485–94.

    CAS  PubMed  Google Scholar 

  26. Shibata M, Hoque MO. Targeting cancer stem cells: a strategy for effective eradication of cancer. Cancers. 2019;11(5):732.

    CAS  PubMed Central  Google Scholar 

  27. Khan AQ, et al. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells. 2019;8(8):840.

    PubMed Central  Google Scholar 

  28. Creighton CJ, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci. 2009;106(33):13820–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Park SY, et al. Heterogeneity for stem cell–related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res. 2010;16(3):876–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma F, et al. Enriched CD44+/CD24− population drives the aggressive phenotypes presented in triple-negative breast cancer (TNBC). Cancer Lett. 2014;353(2):153–9.

    CAS  PubMed  Google Scholar 

  31. Zhou S, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34.

    CAS  PubMed  Google Scholar 

  32. Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics. 2008;9:105.

    CAS  PubMed  Google Scholar 

  33. Sissung TM, et al. Pharmacogenetics of membrane transporters: an update on current approaches. Mol Biotechnol. 2010;44(2):152–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamada A, et al. High expression of ATP-binding cassette transporter ABCC11 in breast tumors is associated with aggressive subtypes and low disease-free survival. Breast Cancer Res Treat. 2013;137(3):773–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu L, et al. Expression of aldehyde dehydrogenase 1 and ATP-binding cassette superfamily G member 2 is enhanced in primary foci and metastatic lymph node from patients with triple-negative breast cancer. Biomed Res. 2017;28:5078–83.

    CAS  Google Scholar 

  36. Guestini F, et al. Impact of Topoisomerase IIα, PTEN, ABCC1/MRP1, and KI67 on triple-negative breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat. 2019;173(2):275–88.

    CAS  PubMed  Google Scholar 

  37. Arumugam A, et al. Silencing growth hormone receptor inhibits estrogen receptor negative breast cancer through ATP-binding cassette sub-family G member 2. Exp Mol Med. 2019;51(1):1–13.

    CAS  PubMed  Google Scholar 

  38. Oguri T, et al. MRP8/ABCC11 directly confers resistance to 5-fluorouracil. Mol Cancer Ther. 2007;6(1):122–7.

    CAS  PubMed  Google Scholar 

  39. Harrison H, et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Can Res. 2010;70(2):709–18.

    CAS  Google Scholar 

  40. Nagamatsu I, et al. NOTCH4 is a potential therapeutic target for triple-negative breast cancer. Anticancer Res. 2014;34(1):69–80.

    CAS  PubMed  Google Scholar 

  41. Diluvio G, et al. NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest. Oncogenesis. 2018;7(5):1–15.

    CAS  Google Scholar 

  42. Zang S, et al. RNAi-mediated knockdown of Notch-1 leads to cell growth inhibition and enhanced chemosensitivity in human breast cancer. Oncol Rep. 2010;23(4):893–9.

    CAS  PubMed  Google Scholar 

  43. Zhang X, et al. Notch3 inhibits epithelial–mesenchymal transition by activating Kibra-mediated Hippo/YAP signaling in breast cancer epithelial cells. Oncogenesis. 2016;5(11):e269–e269.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Broner EC, et al. AL101 mediated tumor inhibition in notch-altered TNBC PDX models. J Clin Oncol. 2019. https://doi.org/10.1200/JCO.2019.37.15_suppl.1064.

    Article  Google Scholar 

  45. Harris LG, et al. Increased vascularity and spontaneous metastasis of breast cancer by hedgehog signaling mediated upregulation of cyr61. Oncogene. 2012;31(28):3370–80.

    CAS  PubMed  Google Scholar 

  46. Skoda AM, et al. The role of the Hedgehog signaling pathway in cancer: a comprehensive review. Bosn J Basic Med Sci. 2018;18(1):8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kwon Y-J, et al. Gli1 enhances migration and invasion via up-regulation of MMP-11 and promotes metastasis in ERα negative breast cancer cell lines. Clin Exp Metas. 2011;28(5):437.

    CAS  Google Scholar 

  48. Koike Y, et al. Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells. Breast Cancer. 2017;24(5):683–93.

    PubMed  Google Scholar 

  49. Zhang Z, et al. SRGN-TGFβ2 regulatory loop confers invasion and metastasis in triple-negative breast cancer. Oncogenesis. 2017;6(7):e360–e360.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Neuzillet C, et al. Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31.

    CAS  PubMed  Google Scholar 

  51. Asiedu MK, et al. TGFβ/TNFα-mediated epithelial–mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Can Res. 2011;71(13):4707–19.

    CAS  Google Scholar 

  52. Xu X, et al. TGF-β plays a vital role in triple-negative breast cancer (TNBC) drug-resistance through regulating stemness, EMT and apoptosis. Biochem Biophys Res Commun. 2018;502(1):160–5.

    CAS  PubMed  Google Scholar 

  53. Holmgaard RB, et al. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J Immunother Cancer. 2018;6(1):1–15.

    Google Scholar 

  54. Khan MA, et al. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discovery Today. 2019;24(11):2181–91.

    CAS  PubMed  Google Scholar 

  55. Zhang Z, et al. Transmembrane TNF-alpha promotes chemoresistance in breast cancer cells. Oncogene. 2018;37(25):3456–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Fan Y, et al. Regulation of programmed cell death by NF-κB and its role in tumorigenesis and therapy. In: Programmed cell death in cancer progression and therapy. Dordrecht: Springer; 2008. p. 223–50.

    Google Scholar 

  57. Ng LF, et al. WNT signaling in disease. Cells. 2019;8(8):826.

    CAS  PubMed Central  Google Scholar 

  58. Shen H, et al. Nek2B activates the wnt pathway and promotes triple-negative breast cancer chemothezrapy-resistance by stabilizing β-catenin. J Exp Clin Cancer Res. 2019;38(1):1–17.

    Google Scholar 

  59. Corda G, et al. Functional and prognostic significance of the genomic amplification of frizzled 6 (FZD6) in breast cancer. J Pathol. 2017;241(3):350–61.

    CAS  PubMed  Google Scholar 

  60. Ma J, et al. Role of Wnt co-receptor LRP6 in triple negative breast cancer cell migration and invasion. J Cell Biochem. 2017;118(9):2968–76.

    CAS  PubMed  Google Scholar 

  61. Paradiso A, et al. Biomarkers predictive for clinical efficacy of taxol-based chemotherapy in advanced breast cancer. Ann Oncol. 2005;16:iv14–9.

    PubMed  Google Scholar 

  62. Tommasi S, et al. Cytoskeleton and paclitaxel sensitivity in breast cancer: the role of β-tubulins. Int J Cancer. 2007;120(10):2078–85.

    CAS  PubMed  Google Scholar 

  63. Ma C, et al. N6-methyldeoxyadenine is a transgenerational epigenetic signal for mitochondrial stress adaptation. Nat Cell Biol. 2019;21(3):319–27.

    CAS  PubMed  Google Scholar 

  64. Sheng X, et al. DNA N6-methyladenine (6mA) modification regulates drug resistance in triple negative breast cancer. Front Oncol. 2021;10:3241.

    Google Scholar 

  65. Aniogo EC, George BPA, Abrahamse H. The role of photodynamic therapy on multidrug resistant breast cancer. Cancer Cell Int. 2019;19(1):1–14.

    Google Scholar 

  66. O’Reilly EA, et al. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clinical. 2015;3:257–75.

    PubMed  PubMed Central  Google Scholar 

  67. Raguz S, et al. Loss of O6-methylguanine-DNA methyltransferase confers collateral sensitivity to carmustine in topoisomerase II-mediated doxorubicin resistant triple negative breast cancer cells. Biochem Pharmacol. 2013;85(2):186–96.

    CAS  PubMed  Google Scholar 

  68. Huang J, et al. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell. 2005;122(3):421–34.

    CAS  PubMed  Google Scholar 

  69. Kuo W-Y, et al. STAT3/NF-κB-regulated lentiviral TK/GCV suicide gene therapy for cisplatin-resistant triple-negative breast cancer. Theranostics. 2017;7(3):647.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang K, et al. Interleukin-6 contributes to chemoresistance in MDA-MB-231 cells via targeting HIF-1α. J Biochem Mol Toxicol. 2018;32(3):e22039.

    PubMed  Google Scholar 

  71. Aster JC, Pear WS, Blacklow SC. The varied roles of notch in cancer. Annu Rev Pathol. 2017;12:245–75.

    CAS  PubMed  Google Scholar 

  72. Tian J, et al. Bazedoxifene is a novel IL-6/GP130 inhibitor for treating triple-negative breast cancer. Breast Cancer Res Treat. 2019;175(3):553–66.

    CAS  PubMed  Google Scholar 

  73. Wei W, et al. STAT3 signaling is activated preferentially in tumor-initiating cells in claudin-low models of human breast cancer. Stem Cells. 2014;32(10):2571–82.

    CAS  PubMed  Google Scholar 

  74. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14(6):430–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Halasi M, Gartel AL. Targeting FOXM1 in cancer. Biochem Pharmacol. 2013;85(5):644–52.

    CAS  PubMed  Google Scholar 

  76. Saba R, et al. The role of forkhead box protein M1 in breast cancer progression and resistance to therapy. Int J Breast Cancer. 2016;2016:1–8.

    Google Scholar 

  77. Teh M-T, et al. FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Can Res. 2002;62(16):4773–80.

    CAS  Google Scholar 

  78. Fu Z, et al. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol. 2008;10(9):1076–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Major ML, Lepe R, Costa RH. Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol Cell Biol. 2004;24(7):2649–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pandy JGP, et al. Triple negative breast cancer and platinum-based systemic treatment: a meta-analysis and systematic review. BMC Cancer. 2019;19(1):1–9.

    CAS  Google Scholar 

  81. Zhu L, Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 2019;24(1):1–11.

    Google Scholar 

  82. Eikesdal HP, et al. Olaparib monotherapy as primary treatment in unselected triple negative breast cancer. Ann Oncol. 2021;32(2):240–9.

    CAS  PubMed  Google Scholar 

  83. Franzoi MA, de Azambuja E. Atezolizumab in metastatic triple-negative breast cancer: IMpassion130 and 131 trials-how to explain different results? ESMO open. 2020;5(6):001112.

    Google Scholar 

  84. Lee HT, Lee SH, Heo Y-S. Molecular interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in immuno-oncology. Molecules. 2019;24(6):1190.

    PubMed Central  Google Scholar 

  85. Gerbrecht B-M. Current Canadian experience with capecitabine: partnering with patients to optimize therapy. Cancer Nurs. 2003;26(2):161–7.

    PubMed  Google Scholar 

  86. Seligson JM, et al. Sacituzumab Govitecan-hziy: an antibody-drug conjugate for the treatment of refractory, metastatic, triple-negative breast cancer. Ann Pharmacother. 2021;55(7):921–31.

    CAS  PubMed  Google Scholar 

  87. Caparica R, Lambertini M, de Azambuja E. How I treat metastatic triple-negative breast cancer. ESMO Open. 2019;4:e000504.

    PubMed  PubMed Central  Google Scholar 

  88. Sudhakaran M, et al. Apigenin by targeting hnRNPA2 sensitizes triple-negative breast cancer spheroids to doxorubicin-induced apoptosis and regulates expression of ABCC4 and ABCG2 drug efflux transporters. Biochem Pharmacol. 2020;182:114259.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Blum JL, et al. Anthracyclines in early breast cancer: the ABC trials—USOR 06–090, NSABP B-46-I/USOR 07132, and NSABP B-49 (NRG Oncology). J Clin Oncol. 2017;35(23):2647.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ormrod D, et al. Epirubicin. Drugs Aging. 1999;15(5):389–416.

    CAS  PubMed  Google Scholar 

  91. Kazazi-Hyseni F, Beijnen JH, Schellens JH. Bevacizumab. Oncologist. 2010;15(8):819.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tan AR, Toppmeyer DL. Ixabepilone in metastatic breast cancer: complement or alternative to taxanes? Clin Cancer Res. 2008;14(21):6725–9.

    PubMed  Google Scholar 

  93. Wang X, et al. Prospective study of cyclophosphamide, thiotepa, carboplatin combined with adoptive DC-CIK followed by metronomic cyclophosphamide therapy as salvage treatment for triple negative metastatic breast cancers patients (aged< 45). Clin Transl Oncol. 2016;18(1):82–7.

    CAS  PubMed  Google Scholar 

  94. Diéras V, et al. Iniparib administered weekly or twice-weekly in combination with gemcitabine/carboplatin in patients with metastatic triple-negative breast cancer: a phase II randomized open-label study with pharmacokinetics. Breast Cancer Res Treat. 2019;177(2):383–93.

    PubMed  Google Scholar 

  95. Wen W, et al. Eribulin synergistically increases anti-tumor activity of an mTOR inhibitor by inhibiting pAKT/pS6K/pS6 in triple negative breast cancer. Cells. 2019;8(9):1010.

    CAS  PubMed Central  Google Scholar 

  96. Facchinetti F, et al. Facts and new hopes on selective FGFR inhibitors in solid tumors. Clin Cancer Res. 2020;26(4):764–74.

    CAS  PubMed  Google Scholar 

  97. El Guerrab A, et al. Co-targeting EGFR and mTOR with gefitinib and everolimus in triple-negative breast cancer cells. Sci Rep. 2020;10(1):1–12.

    Google Scholar 

  98. Roberts MS, et al. KLF4 defines the efficacy of the epidermal growth factor receptor inhibitor, erlotinib, in triple-negative breast cancer cells by repressing the EGFR gene. Breast Cancer Res. 2020;22(1):1–14.

    Google Scholar 

  99. Harding J, Burtness B. An epidermal growth factor receptor chimeric human-murine monoclonal antibody. Drugs Today (Barc). 2005;41:107–27.

    CAS  Google Scholar 

  100. Posner LE, et al. Mitoxantrone: an overview of safety and toxicity. Invest New Drugs. 1985;3(2):123–32.

    CAS  PubMed  Google Scholar 

  101. Gerrits C, et al. Topoisomerase I inhibitors: the relevance of prolonged exposure for present clinical development. Br J Cancer. 1997;76(7):952–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gangrade A, et al. Preferential inhibition of Wnt/β-catenin signaling by novel benzimidazole compounds in triple-negative breast cancer. Int J Mol Sci. 2018;19(5):1524.

    PubMed Central  Google Scholar 

  103. Bellat V, et al. Transcriptomic insight into salinomycin mechanisms in breast cancer cell lines: synergistic effects with dasatinib and induction of estrogen receptor β. BMC Cancer. 2020;20(1):1–21.

    Google Scholar 

  104. Tzeng H-E, et al. The pan-PI3K inhibitor GDC-0941 activates canonical WNT signaling to confer resistance in TNBC cells: resistance reversal with WNT inhibitor. Oncotarget. 2015;6(13):11061.

    PubMed  PubMed Central  Google Scholar 

  105. Maitland ML, et al. First-in-human study of PF-06647020 (Cofetuzumab Pelidotin), an antibody-drug conjugate targeting protein tyrosine kinase 7 (PTK7), in advanced solid tumors. Clin Cancer Res. 2021;27:4511.

    CAS  PubMed  Google Scholar 

  106. Doheny D, et al. Combined inhibition of JAK2-STAT3 and SMO-GLI1/tGLI1 pathways suppresses breast cancer stem cells, tumor growth, and metastasis. Oncogene. 2020;39(42):6589–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Peer E, Tesanovic S, Aberger F. Next-generation Hedgehog/GLI pathway inhibitors for cancer therapy. Cancers. 2019;11(4):538.

    CAS  PubMed Central  Google Scholar 

  108. Ingallina C, et al. Polymeric glabrescione B nanocapsules for passive targeting of Hedgehog-dependent tumor therapy in vitro. Nanomedicine. 2017;12(7):711–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Spaqnuolo C, et al. Genistein and cancer: current status, challenger and future directions. Adv Nutr. 2015;6:408–19.

    Google Scholar 

  110. Alhoshani A, et al. BCL-2 inhibitor venetoclax induces autophagy-associated cell death, cell cycle arrest, and apoptosis in human breast cancer cells. Onco Targets Ther. 2020;13:13357.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Forero-Torres A, et al. TBCRC 019: a phase II trial of nanoparticle albumin-bound paclitaxel with or without the anti-death receptor 5 monoclonal antibody tigatuzumab in patients with triple-negative breast cancer. Clin Cancer Res. 2015;21(12):2722–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Doi T, et al. Phase I study of ipatasertib as a single agent and in combination with abiraterone plus prednisolone in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2019;84(2):393–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tolcher AW, et al. Phase I dose-escalation trial of the oral AKT inhibitor uprosertib in combination with the oral MEK1/MEK2 inhibitor trametinib in patients with solid tumors. Cancer Chemother Pharmacol. 2020;85:673.

    CAS  PubMed  Google Scholar 

  114. Cheng C-C, et al. Stat3/Oct-4/c-Myc signal circuit for regulating stemness-mediated doxorubicin resistance of triple-negative breast cancer cells and inhibitory effects of WP1066. Int J Oncol. 2018;53(1):339–48.

    CAS  PubMed  Google Scholar 

  115. Gonzalez Suarez N, et al. EGCG inhibits adipose-derived mesenchymal stem cells differentiation into adipocytes and prevents a STAT3-mediated paracrine oncogenic control of triple-negative breast cancer cell invasive phenotype. Molecules. 2021;26(6):1506.

    PubMed  PubMed Central  Google Scholar 

  116. Lau Y-TK, et al. Targeting STAT3 in cancer with nucleotide therapeutics. Cancers. 2019;11(11):1681.

    CAS  Google Scholar 

  117. Canonici A, et al. Combined targeting EGFR and SRC as a potential novel therapeutic approach for the treatment of triple negative breast cancer. Ther Adv Med Oncol. 2020;12:1758835919897546.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Haluska P, et al. Phase I dose-escalation study of MEDI-573, a bispecific, antiligand monoclonal antibody against IGFI and IGFII, in patients with advanced solid tumors. Clin Cancer Res. 2014;20(18):4747–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–31.

    CAS  PubMed  Google Scholar 

  120. Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15(1):2–8.

    CAS  PubMed  Google Scholar 

  121. Pitner MK, et al. MELK: a potential novel therapeutic target for TNBC and other aggressive malignancies. Expert Opin Ther Targets. 2017;21(9):849–59.

    CAS  PubMed  Google Scholar 

  122. Wang Y, et al. MELK is an oncogenic kinase essential for mitotic progression in basal-like breast cancer cells. Elife. 2014;3:e01763.

    PubMed  PubMed Central  Google Scholar 

  123. Obayashi S, et al. Stathmin1 expression is associated with aggressive phenotypes and cancer stem cell marker expression in breast cancer patients. Int J Oncol. 2017;51(3):781–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou H, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet. 1998;20(2):189–93.

    CAS  PubMed  Google Scholar 

  125. Opyrchal M, et al. Molecular targeting of the Aurora-A/SMAD5 oncogenic axis restores chemosensitivity in human breast cancer cells. Oncotarget. 2017;8(53):91803.

    PubMed  PubMed Central  Google Scholar 

  126. Yan M, et al. Aurora-A kinase: a potent oncogene and target for cancer therapy. Med Res Rev. 2016;36(6):1036–79.

    PubMed  Google Scholar 

  127. Wu C-C, et al. p53 negatively regulates Aurora A via both transcriptional and posttranslational regulation. Cell Cycle. 2012;11(18):3433–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang L-H, et al. The mitotic kinase Aurora-A induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Can Res. 2010;70(22):9118–28.

    CAS  Google Scholar 

  129. Yang N, et al. FOXM1 recruits nuclear Aurora kinase A to participate in a positive feedback loop essential for the self-renewal of breast cancer stem cells. Oncogene. 2017;36(24):3428–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wilson MSC, et al. FOXO and FOXM1 in cancer: the FOXO-FOXM1 axis shapes the outcome of cancer chemotherapy. Curr Drug Targets. 2011;12(9):1256–66.

    CAS  PubMed  Google Scholar 

  131. Rehman A, et al. FOXO3a expression is associated with lymph node metastasis and poor disease-free survival in triple-negative breast cancer. J Clin Pathol. 2018;71(9):806–13.

    CAS  PubMed  Google Scholar 

  132. Taylor S, et al. Evaluating the evidence for targeting FOXO3a in breast cancer: a systematic review. Cancer Cell Int. 2015;15(1):1–9.

    PubMed  PubMed Central  Google Scholar 

  133. Park S-H, et al. Pharmacological activation of FOXO3 suppresses triple-negative breast cancer in vitro and in vivo. Oncotarget. 2016;7(27):42110.

    PubMed  PubMed Central  Google Scholar 

  134. Goda C, et al. Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway. PLoS Genet. 2020;16(4):e1008692.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sizek H, et al. Boolean model of growth signaling, cell cycle and apoptosis predicts the molecular mechanism of aberrant cell cycle progression driven by hyperactive PI3K. PLoS Comput Biol. 2019;15(3):e1006402.

    PubMed  PubMed Central  Google Scholar 

  136. Kettenbach AN, et al. Global assessment of its network dynamics reveals that the kinase Plk1 inhibits the phosphatase PP6 to promote Aurora A activity. Sci Signal. 2018. https://doi.org/10.1126/scisignal.aaq1441.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hao Y, et al. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283(9):5496–509.

    CAS  PubMed  Google Scholar 

  138. Chang S, et al. Aurora A kinase activates YAP signaling in triple-negative breast cancer. Oncogene. 2017;36(9):1265–75.

    CAS  PubMed  Google Scholar 

  139. Zhao B, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21(21):2747–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhao B, et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 2010;24(1):72–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Shi P, Feng J, Chen C. Hippo pathway in mammary gland development and breast cancer. Acta Biochim Biophys Sin. 2015;47(1):53–9.

    CAS  PubMed  Google Scholar 

  142. Zhang Z, et al. SRGN crosstalks with YAP to maintain chemoresistance and stemness in breast cancer cells by modulating HDAC2 expression. Theranostics. 2020;10(10):4290.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang N, et al. Inhibition of sonic hedgehog signaling pathway by thiazole antibiotic thiostrepton attenuates the CD44+/CD24-stem-like population and sphere-forming capacity in triple-negative breast cancer. Cell Physiol Biochem. 2016;38(3):1157–70.

    CAS  PubMed  Google Scholar 

  144. Ring A, et al. CBP/β-Catenin/FOXM1 is a novel therapeutic target in triple negative breast cancer. Cancers. 2018;10(12):525.

    CAS  PubMed Central  Google Scholar 

  145. Yang H, et al. Dual Aurora A and JAK2 kinase blockade effectively suppresses malignant transformation. Oncotarget. 2014;5(10):2947.

    PubMed  PubMed Central  Google Scholar 

  146. Zhu S, et al. Ceramide kinase mediates intrinsic resistance and inferior response to chemotherapy in triple-negative breast cancer by upregulating Ras/ERK and PI3K/Akt pathways. Cancer Cell Int. 2021;21(1):1–11.

    Google Scholar 

  147. Bornancin F. Ceramide kinase: the first decade. Cell Signal. 2011;23(6):999–1008.

    CAS  PubMed  Google Scholar 

  148. Payne AW, et al. Ceramide kinase promotes tumor cell survival and mammary tumor recurrence. Can Res. 2014;74(21):6352–63.

    CAS  Google Scholar 

  149. Gangoiti P, et al. Implication of ceramide, ceramide 1-phosphate and sphingosine 1-phosphate in tumorigenesis. Transl Oncogenom. 2008;3:81.

    CAS  Google Scholar 

  150. Lewis AC, et al. Targeting sphingolipid metabolism as an approach for combination therapies in haematological malignancies. Cell Death Discovery. 2018;4(1):1–11.

    Google Scholar 

  151. Rivera I-G, et al. Ceramide 1-phosphate regulates cell migration and invasion of human pancreatic cancer cells. Biochem Pharmacol. 2016;102:107–19.

    CAS  PubMed  Google Scholar 

  152. Janes MR, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med. 2010;16(2):205–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Al-Rashed F, et al. Ceramide kinase regulates TNF-α-induced immune responses in human monocytic cells. Sci Rep. 2021;11(1):1–14.

    Google Scholar 

  154. Pastukhov O, et al. The ceramide kinase inhibitor NVP-231 inhibits breast and lung cancer cell proliferation by inducing M phase arrest and subsequent cell death. Br J Pharmacol. 2014;171(24):5829–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Newcomb B, et al. Identification of an acid sphingomyelinase ceramide kinase pathway in the regulation of the chemokine CCL5 [S]. J Lipid Res. 2018;59(7):1219–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen J, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lee JO, et al. Metformin overcomes resistance to cisplatin in triple-negative breast cancer (TNBC) cells by targeting RAD51. Breast Cancer Res. 2019;21(1):1–18.

    Google Scholar 

  158. Deutsch D, et al. Sequencing of bovine enamelin (“tuftelin”) a novel acidic enamel protein. J Biol Chem. 1991;266(24):16021–8.

    CAS  PubMed  Google Scholar 

  159. Liu W, et al. TUFT1 promotes triple negative breast cancer metastasis, stemness, and chemoresistance by up-regulating the Rac1/β-catenin pathway. Front Oncol. 2019;9:617.

    PubMed  PubMed Central  Google Scholar 

  160. Kawasaki N, et al. TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling. Cell discovery. 2018;4(1):1–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Gangemi RMR, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem cells. 2009;27(1):40–8.

    CAS  PubMed  Google Scholar 

  162. Zhang J, et al. NANOG modulates stemness in human colorectal cancer. Oncogene. 2013;32(37):4397–405.

    CAS  PubMed  Google Scholar 

  163. Yang F, Zhang J, Yang H. OCT4, SOX2, and NANOG positive expression correlates with poor differentiation, advanced disease stages, and worse overall survival in HER2+ breast cancer patients. Onco Targets Ther. 2018;11:7873.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Liu W, et al. TUFT1 is expressed in breast cancer and involved in cancer cell proliferation and survival. Oncotarget. 2017;8(43):74962.

    PubMed  PubMed Central  Google Scholar 

  165. Rao J, et al. Semaphorin-3F suppresses the stemness of colorectal cancer cells by inactivating Rac1. Cancer Lett. 2015;358(1):76–84.

    CAS  PubMed  Google Scholar 

  166. Xiang L, et al. Hypoxia-inducible factor-2a is associated with ABCG2 expression, histology-grade and Ki67 expression in breast invasive ductal carcinoma. Diagn Pathol. 2012;7(1):1–6.

    Google Scholar 

  167. Lv Y, et al. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer. Onco Targets Ther. 2015;8:1941.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Cosse J-P, Michiels C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem Anti-Cancer Agents). 2008;8(7):790–7.

    CAS  Google Scholar 

  169. Zhou W, Guo S, Gonzalez-Perez R. Leptin pro-angiogenic signature in breast cancer is linked to IL-1 signalling. Br J Cancer. 2011;104(1):128–37.

    CAS  PubMed  Google Scholar 

  170. Gilkes DM, Semenza GL. Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol. 2013;9(11):1623–36.

    CAS  PubMed  Google Scholar 

  171. Kim H, et al. The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells. Breast Cancer Res. 2018;20(1):1–15.

    Google Scholar 

  172. Cecil DL, et al. Immunization against HIF-1a inhibits the growth of basal mammary tumors and targets mammary stem cells in vivo. Cancer Ther Preclin. 2016. https://doi.org/10.1158/1078-0432.CCR-16-1678.

    Article  Google Scholar 

  173. Salceda S, Caro J. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions: its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997;272(36):22642–7.

    CAS  PubMed  Google Scholar 

  174. Xiong G, et al. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance. Nat Commun. 2018;9(1):1–16.

    Google Scholar 

  175. Simsek T, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7(3):380–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Jang Y-Y, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110(8):3056–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Hirsilä M, et al. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem. 2003;278(33):30772–80.

    PubMed  Google Scholar 

  178. Wu H, et al. Hypoxia-mediated complement 1q binding protein regulates metastasis and chemoresistance in triple-negative breast cancer and modulates the PKC-NF-κB-VCAM-1 signaling pathway. Front Cell Dev Biol. 2021;9:281.

    Google Scholar 

  179. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.

    CAS  PubMed  Google Scholar 

  180. Feichtinger RG, et al. Biallelic C1QBP mutations cause severe neonatal-, childhood-, or later-onset cardiomyopathy associated with combined respiratory-chain deficiencies. Am J Hum Genet. 2017;101(4):525–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kim K-B, et al. Cell-surface receptor for complement component C1q (gC1qR) is a key regulator for lamellipodia formation and cancer metastasis. J Biol Chem. 2011;286(26):23093–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Fogal V, et al. Mitochondrial/cell-surface protein p32/gC1qR as a molecular target in tumor cells and tumor stroma. Can Res. 2008;68(17):7210–8.

    CAS  Google Scholar 

  183. Fogal V, et al. Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol. 2010;30(6):1303–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Saha P, Ghosh I, Datta K. Increased hyaluronan levels in HABP1/p32/gC1qR overexpressing HepG2 cells inhibit autophagic vacuolation regulating tumor potency. PLoS One. 2014;9(7):e103208.

    PubMed  PubMed Central  Google Scholar 

  185. Bharti SK, et al. Metabolic consequences of HIF silencing in a triple negative human breast cancer xenograft. Oncotarget. 2018;9(20):15326.

    PubMed  PubMed Central  Google Scholar 

  186. Semenza GL. Hypoxia-inducible factors: coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 2017;36(3):252–9.

    CAS  PubMed  Google Scholar 

  187. Silva L (2018) Branched-chain amino acid metabolism in the tumor microenvironment interaction

  188. Ma RY, et al. Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci. 2005;118(4):795–806.

    CAS  PubMed  Google Scholar 

  189. Zanin R, et al. HMGA1 promotes breast cancer angiogenesis supporting the stability, nuclear localization and transcriptional activity of FOXM1. J Exp Clin Cancer Res. 2019;38(1):1–23.

    CAS  Google Scholar 

  190. Yang N, et al. Aurora kinase A stabilizes FOXM1 to enhance paclitaxel resistance in triple-negative breast cancer. J Cell Mol Med. 2019;23(9):6442–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Bollu LR, et al. Mutant P53 induces MELK expression by release of wild-type P53-dependent suppression of FOXM1. NPJ Breast Cancer. 2020;6(1):1–12.

    Google Scholar 

  192. Dey P, et al. Suppression of tumor growth, metastasis, and signaling pathways by reducing FOXM1 activity in triple negative breast cancer. Cancers. 2020;12(9):2677.

    CAS  PubMed Central  Google Scholar 

  193. Riley T, et al. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9(5):402–12.

    CAS  PubMed  Google Scholar 

  194. Wiegmans AP, et al. Rad51 supports triple negative breast cancer metastasis. Oncotarget. 2014;5(10):3261.

    PubMed  PubMed Central  Google Scholar 

  195. Zhao M, et al. Abraxane, the nanoparticle formulation of paclitaxel can induce drug resistance by up-regulation of P-gp. PloS One. 2015;10(7):e0131429.

    PubMed  PubMed Central  Google Scholar 

  196. De P, et al. RAC1 GTP-ase signals Wnt-beta-catenin pathway mediated integrin-directed metastasis-associated tumor cell phenotypes in triple negative breast cancers. Oncotarget. 2017;8(2):3072.

    PubMed  Google Scholar 

  197. Basudhar D, et al. Coexpression of NOS2 and COX2 accelerates tumor growth and reduces survival in estrogen receptor-negative breast cancer. Proc Natl Acad Sci. 2017;114(49):13030–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Chang C-H, et al. Combining ABCG2 inhibitors with IMMU-132, an anti–trop-2 antibody conjugate of SN-38, overcomes resistance to SN-38 in breast and gastric cancers. Mol Cancer Ther. 2016;15(8):1910–9.

    CAS  PubMed  Google Scholar 

  199. Muntimadugu E, et al. CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B. 2016;143:532–46.

    CAS  Google Scholar 

  200. Jang G-B, et al. Wnt/β-catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Can Res. 2015;75(8):1691–702.

    CAS  Google Scholar 

  201. Diamond JR, et al. Phase Ib clinical trial of the anti-frizzled antibody vantictumab (OMP-18R5) plus paclitaxel in patients with locally advanced or metastatic HER2-negative breast cancer. Breast Cancer Res Treat. 2020;184(1):53–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Baran N, Konopleva M. Molecular pathways: hypoxia-activated prodrugs in cancer therapy. Clin Cancer Res. 2017;23(10):2382–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Greer YE, et al. MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21(1):1–17.

    Google Scholar 

  204. Bellaye P-S, et al. Nuclear imaging study of the pharmacodynamic effects of Debio 1143, an antagonist of multiple inhibitor of apoptosis proteins (IAPs), in a triple-negative breast cancer model. Contrast Media Mol Imaging. 2018;2018:1–11.

    Google Scholar 

  205. Bardia A, et al. Paclitaxel with inhibitor of apoptosis antagonist, LCL161, for localized triple-negative breast cancer, prospectively stratified by gene signature in a biomarker-driven neoadjuvant trial. J Clin Oncol. 2018;36(31):3126–33.

    CAS  Google Scholar 

  206. Tsukioka Y, et al. Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil). Jpn J Cancer Res. 2002;93(10):1145–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res. 2019;38(1):1–22.

    Google Scholar 

  208. Pietilä M, et al. FOXC2 regulates the G2/M transition of stem cell-rich breast cancer cells and sensitizes them to PLK1 inhibition. Sci Rep. 2016;6(1):1–12.

    Google Scholar 

  209. Loibl S, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol. 2018;19(4):497–509.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilas D. Nasare.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, A., Mitra, S., Mistry, T. et al. Molecular targets and therapeutics in chemoresistance of triple-negative breast cancer. Med Oncol 39, 14 (2022). https://doi.org/10.1007/s12032-021-01610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01610-x

Keywords

Navigation