[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Tumor budding and human chorionic gonadotropin-β expression correlate with unfavorable patient outcome in colorectal carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Tumor budding is thought to represent a manifestation of epithelial-to-mesenchymal transition (EMT) and it has been correlated with poor patient outcomes in colorectal cancer (CRC). Our group recently demonstrated that human chorionic gonadotropin-β (hCGβ) modulates EMT in CRC. In the current study, based on the likely relationships between tumor budding and hCGβ expression, we examined their clinicopathologic significance in CRC. Twenty-eight of 80 (35.0%) CRC showed tumor budding. Tumor budding significantly correlated with lymph node metastasis (P < 0.01), pathologic stage (P < 0.01), lymphatic invasion (P = 0.044), and vascular invasion (P = 0.013). Thirteen of 80 (16.3%) CRC were hCGβ positive on immunohistochemistry. More tumor buds were present in the hCGβ-positive cases (P < 0.01), and tumor budding was significantly correlated with hCGβ positivity (P < 0.01). Cases with both tumor budding and hCGβ expression had the poorest prognosis compared with all other groups (P < 0.01). In conclusion, tumor budding and hCGβ expression are closely associated with EMT, and they are independent prognostic factors in CRC. They identify patients with an “EMT phenotype” who may respond to targeted molecular therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    Article  PubMed  Google Scholar 

  2. Mitrovic B, Schaeffer DF, Riddell RH, Kirsch R. Tumor budding in colorectal carcinoma: time to take notice. Mod Pathol. 2012;25(10):1315–25.

    Article  PubMed  CAS  Google Scholar 

  3. Lugli A, Karamitopoulou E, Zlobec I. Tumour budding: a promising parameter in colorectal cancer. Br J Cancer. 2012;106(11):1713–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ueno H, Price AB, Wilkinson KH, Jass JR, Mochizuki H, Talbot IC. A new prognostic staging system for rectal cancer. Ann Surg. 2004;240(5):832–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Okuyama T, Oya M, Ishikawa H. Budding as a risk factor for lymph node metastasis in pT1 or pT2 well-differentiated colorectal adenocarcinoma. Dis Colon Rectum. 2002;45(5):628 – 34.

    Article  PubMed  Google Scholar 

  6. Hase K, Shatney C, Johnson D, Trollope M, Vierra M. Prognostic value of tumor “budding” in patients with colorectal cancer. Dis Colon Rectum. 1993;36(7):627 – 35.

    Article  PubMed  CAS  Google Scholar 

  7. Ueno H, Mochizuki H, Shinto E, Hashiguchi Y, Hase K, Talbot IC. Histologic indices in biopsy specimens for estimating the probability of extended local spread in patients with rectal carcinoma. Cancer. 2002;94(11):2882–91.

    Article  PubMed  Google Scholar 

  8. Bradley CA, Dunne PD, Bingham V, McQuaid S, Khawaja H, Craig S, et al. Transcriptional upregulation of c-MET is associated with invasion and tumor budding in colorectal cancer. Oncotarget. 2016;7(48):78932–45.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014;16(6):488 – 94.

    Article  PubMed  CAS  Google Scholar 

  10. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Galvan JA, Helbling M, Koelzer VH, Tschan MP, Berger MD, Hadrich M, et al. TWIST1 and TWIST2 promoter methylation and protein expression in tumor stroma influence the epithelial-mesenchymal transition-like tumor budding phenotype in colorectal cancer. Oncotarget. 2015;6(2):874 – 85.

    Article  PubMed  Google Scholar 

  12. Zlobec I, Lugli A. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget. 2010;1(7):651–61.

    PubMed  PubMed Central  Google Scholar 

  13. Cole LA. hCG, the wonder of today’s science. Reprod Biol Endocrinol. 2012;10:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lundin M, Nordling S, Lundin J, Alfthan H, Stenman UH, Haglund C. Tissue expression of human chorionic gonadotropin beta predicts outcome in colorectal cancer: a comparison with serum expression. Int J Cancer. 2001;95(1):18–22.

    Article  PubMed  CAS  Google Scholar 

  15. Louhimo J, Kokkola A, Alfthan H, Stenman UH, Haglund C. Preoperative hCGbeta and CA 72-4 are prognostic factors in gastric cancer. Int J Cancer. 2004;111(6):929–33.

    Article  PubMed  CAS  Google Scholar 

  16. Louhimo J, Alfthan H, Stenman UH, Haglund C. Serum HCG beta and CA 72-4 are stronger prognostic factors than CEA, CA 19-9 and CA 242 in pancreatic cancer. Oncology. 2004;66(2):126–31.

    Article  PubMed  CAS  Google Scholar 

  17. Butler SA, Ikram MS, Mathieu S, Iles RK. The increase in bladder carcinoma cell population induced by the free beta subunit of human chorionic gonadotrophin is a result of an anti-apoptosis effect and not cell proliferation. Br J Cancer. 2000;82(9):1553–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lapthorn AJ, Harris DC, Littlejohn A, Lustbader JW, Canfield RE, Machin KJ, et al. Crystal structure of human chorionic gonadotropin. Nature. 1994;369(6480):455–61.

    Article  PubMed  CAS  Google Scholar 

  19. Kawamata F, Nishihara H, Homma S, Kato Y, Tsuda M, Konishi Y, et al. Chorionic Gonadotropin-beta Modulates Epithelial-Mesenchymal Transition in Colorectal Carcinoma Metastasis. Am J Pathol. 2018;188(1):204–15.

    Article  PubMed  CAS  Google Scholar 

  20. Sobin LH, Compton CC. TNM seventh edition: what’s new, what’s changed: communication from the International Union Against Cancer and the American Joint Committee on Cancer. Cancer. 2010;116(22):5336–9.

    Article  PubMed  Google Scholar 

  21. Ueno H, Murphy J, Jass JR, Mochizuki H, Talbot IC. Tumour ‘budding’ as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology. 2002;40(2):127–32.

    Article  PubMed  CAS  Google Scholar 

  22. Oh BY, Park YA, Huh JW, Yun SH, Kim HC, Chun HK, et al. Prognostic impact of tumor-budding grade in stages 1–3 colon cancer: a retrospective cohort study. Ann Surg Oncol. 2018;25(1):204 – 11.

    Article  PubMed  Google Scholar 

  23. Arnold D, Lueza B, Douillard JY, Peeters M, Lenz HJ, Venook A, et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol. 2017;28(8):1713–29.

    Article  PubMed  CAS  Google Scholar 

  24. Kuramochi H, Nakamura A, Nakajima G, Kaneko Y, Araida T, Yamamoto M, et al. PTEN mRNA expression is less pronounced in left- than right-sided colon cancer: a retrospective observational study. BMC Cancer. 2016;16:366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lugli A, Kirsch R, Ajioka Y, Bosman F, Cathomas G, Dawson H, et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod Pathol. 2017;30(9):1299–311.

    Article  Google Scholar 

  26. Horst D, Budczies J, Brabletz T, Kirchner T, Hlubek F. Invasion associated up-regulation of nuclear factor kappaB target genes in colorectal cancer. Cancer. 2009;115(21):4946–58.

    Article  PubMed  CAS  Google Scholar 

  27. Hlubek F, Brabletz T, Budczies J, Pfeiffer S, Jung A, Kirchner T. Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. Int J Cancer. 2007;121(9):1941–8.

    Article  PubMed  CAS  Google Scholar 

  28. De Smedt L, Palmans S, Andel D, Govaere O, Boeckx B, Smeets D, et al. Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching. Br J Cancer. 2017;116(1):58–65.

    Article  PubMed  CAS  Google Scholar 

  29. Zlobec I, Molinari F, Martin V, Mazzucchelli L, Saletti P, Trezzi R, et al. Tumor budding predicts response to anti-EGFR therapies in metastatic colorectal cancer patients. World J Gastroenterol. 2010;16(38):4823–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Moulton HM, Yoshihara PH, Mason DH, Iversen PL, Triozzi PL. Active specific immunotherapy with a beta-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: antibody response is associated with improved survival. Clin Cancer Res. 2002;8(7):2044–51.

    PubMed  CAS  Google Scholar 

  31. Berndt S, Blacher S, Munaut C, Detilleux J, Perrier d’Hauterive S, Huhtaniemi I, et al. Hyperglycosylated human chorionic gonadotropin stimulates angiogenesis through TGF-beta receptor activation. FASEB J. 2013;27(4):1309–21.

    Article  PubMed  CAS  Google Scholar 

  32. Gulubova M, Manolova I, Ananiev J, Julianov A, Yovchev Y, Peeva K. Role of TGF-beta1, its receptor TGFbetaRII, and Smad proteins in the progression of colorectal cancer. Int J Colorectal Dis. 2010;25(5):591–9.

    Article  PubMed  Google Scholar 

  33. Liu XQ, Rajput A, Geng L, Ongchin M, Chaudhuri A, Wang J. Restoration of transforming growth factor-beta receptor II expression in colon cancer cells with microsatellite instability increases metastatic potential in vivo. J Biol Chem. 2011;286(18):16082–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lehnert SA, Akhurst RJ. Embryonic expression pattern of TGF beta type-1 RNA suggests both paracrine and autocrine mechanisms of action. Development. 1988;104(2):263 – 73.

    PubMed  CAS  Google Scholar 

  35. Fujii D, Brissenden JE, Derynck R, Francke U. Transforming growth factor beta gene maps to human chromosome 19 long arm and to mouse chromosome 7. Somat Cell Mol Genet. 1986;12(3):281–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Futoshi Kawamata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standard of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konishi, Y., Kawamata, F., Nishihara, H. et al. Tumor budding and human chorionic gonadotropin-β expression correlate with unfavorable patient outcome in colorectal carcinoma. Med Oncol 35, 104 (2018). https://doi.org/10.1007/s12032-018-1164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-018-1164-x

Keywords

Navigation