Abstract
The present study aimed to investigate whether serum growth differentiation factor 15 concentration is a valuable and reliable diagnostic biomarker of mitochondrial diseases. We examined consecutive patients with mitochondrial diseases, in comparison with patients with non-mitochondrial disease neuromuscular disorders and healthy controls. The serum concentrations of growth differentiation factor 15 were measured by ELISA, and compared with those of FGF21, lactate, and creatine kinase. We also evaluated the correlations between growth differentiation factor 15 concentrations and the Newcastle Mitochondrial Disease Adult Scale, numbers of ragged-red fibers, and COX-negative fibers in the biopsied muscles. The median serum growth differentiation factor 15 concentration was significantly elevated in 42 patients with mitochondrial diseases, compared with 20 patients with non-mitochondrial disease neuromuscular disorders and 50 healthy controls. The area under the curve of growth differentiation factor 15 for the diagnosis of muscle-manifesting mitochondrial diseases was 0.999, in comparison with those area under the curves of the other biomarkers including fibroblast growth factor 21 (0.935, p < 0.01), lactate (0.845 for p < 0.001), and creatine kinase (0.575, p < 0.001). Growth differentiation factor 15 was significantly correlated with mitochondrial disease severity and the proportion of ragged-red fibers identified in the biopsied muscles. Circulating growth differentiation factor 15 measurement is a superior biomarker with high sensitivity and specificity, which can be used as a non-invasive test to screen for primary mitochondrial diseases and dysmetabolic myopathy with associated mitochondrial dysfunction in susceptible individuals.
Similar content being viewed by others
Abbreviations
- AUC:
-
Area under ROC curve
- COX:
-
Cytochrome c oxidase
- CPEO:
-
Chronic progressive external ophthalmoplegia
- DMD:
-
Duchenne muscular dystrophy
- GDF15:
-
Growth differentiation factor 15
- FGF21:
-
Fibroblast growth factor 21
- IBM:
-
Inclusion body myositis
- MELAS:
-
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes
- MERRF:
-
Myoclonus epilepsy with ragged-red fiber
- MM:
-
Mitochondrial myopathy
- MND:
-
Motoneuron disease
- NMDAS:
-
Newcastle Mitochondrial Disease Adult Scale
- MDs:
-
Mitochondrial diseases
- NMDs:
-
Neuromuscular disorders
- RRFs:
-
Ragged-red fibers
- ROC:
-
Receiver operating characteristics
References
Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF (2008) Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 83(2):254–260. doi:10.1016/j.ajhg.2008.07.004
Skladal D, Halliday J, Thorburn DR (2003) Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126:1905–1912. doi:10.1093/brain/awg170
Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R et al (2015) Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol 77(5):753–759. doi:10.1002/ana.24362
Smeitink JA, Zeviani M, Turnbull DM, Jacobs HT (2006) Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 3(1):9–13. doi:10.1016/j.cmet.2005.12.001
Di Donato S (2009) Multisystem manifestations of mitochondrial disorders. J Neurol 256(5):693–710. doi:10.1007/s00415-009-5028-3
Finsterer J, Harbo HF, Baets J, Van Broeckhoven C, Di Donato S, Fontaine B, De Jonghe P, Lossos A et al (2009) EFNS guidelines on the molecular diagnosis of mitochondrial disorders. Eur J Neurol 16(12):1255–1264. doi:10.1111/j.1468-1331.2009.02811.x
Shaham O, Slate NG, Goldberger O, Xu QW, Ramanathan A, Souza AL, Clish CB, Sims KB et al (2010) A plasma signature of human mitochondrial disease revealed through metabolic profiling of spent media from cultured muscle cells. Proc Natl Acad Sci U S A 107(4):1571–1575. doi:10.1073/pnas.0906039107
Suomalainen A (2011) Biomarkers for mitochondrial respiratory chain disorders. J Inherit Metab Dis 34(2):277–282. doi:10.1007/s10545-010-9222-3
Suomalainen A, Elo JM, Pietilainen KH, Hakonen AH, Sevastianova K, Korpela M, Isohanni P, Marjavaara SK et al (2011) FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol 10(9):806–818. doi:10.1016/s1474-4422(11)70155-2
Davis RL, Liang C, Edema-Hildebrand F, Riley C, Needham M, Sue CM (2013) Fibroblast growth factor 21 is a sensitive biomarker of mitochondrial disease. Neurology 81(21):1819–1826. doi:10.1212/01.wnl.0000436068.43384.ef
Mimeault M, Batra SK (2010) Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokine-1 in cancer. J Cell Physiol 224(3):626–635. doi:10.1002/jcp.22196
Unsicker K, Spittau B, Krieglstein K (2013) The multiple facets of the TGF-beta family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev 24(4):373–384. doi:10.1016/j.cytogfr.2013.05.003
Breit SN, Carrero JJ, Tsai VWW, Yagoutifam N, Luo W, Kuffner T, Bauskin AR, Wu LY et al (2012) Macrophage inhibitory cytokine-1 (MIC-1/GDF15) and mortality in end-stage renal disease. Nephrology Dialysis Transplantation 27(1):70–75. doi:10.1093/ndt/gfr575
Montoro-Garcia S, Hernandez-Romero D, Jover E, Garcia-Honrubia A, Vilchez JA, Casas T, Martinez P, Climent V et al (2012) Growth differentiation factor-15, a novel biomarker related with disease severity in patients with hypertrophic cardiomyopathy. European Journal of Internal Medicine 23(2):169–174. doi:10.1016/j.ejim.2011.08.022
Kempf T, Wollert KC (2013) Risk stratification in critically ill patients: GDF-15 scores in adult respiratory distress syndrome. Crit Care 17(4):2. doi:10.1186/cc12765
Izumiya Y, Hanatani S, Kimura Y, Takashio S, Yamamoto E, Kusaka H, Tokitsu T, Rokutanda T et al (2014) Growth differentiation factor-15 is a useful prognostic marker in patients with heart failure with preserved ejection fraction. Can J Cardiol 30(3):338–344. doi:10.1016/j.cjca.2013.12.010
Trovik J, Salvesen HB, Cuppens T, Amant F, Staff AC (2014) Growth differentiation factor-15 as biomarker in uterine sarcomas. Int J Gynecol Cancer 24(2):252–259. doi:10.1097/igc.0000000000000037
Yang CZ, Ma J, Zhu DW, Liu Y, Montgomery B, Wang LZ, Li J, Zhang ZY et al (2014) GDF15 is a potential predictive biomarker for TPF induction chemotherapy and promotes tumorigenesis and progression in oral squamous cell carcinoma. Ann Oncol 25(6):1215–1222. doi:10.1093/annonc/mdu120
Koene S, de Laat P, van Tienoven DH, Weijers G, Vriens D, Sweep FC, Timmermans J, Kapusta L, Janssen MC, Smeitink JA (2015) Serum GDF15 levels correlate to mitochondrial disease severity and myocardial strain, but not to disease progression in adult m.3243A>G carriers. JIMD reports. doi:10.1007/8904_2015_436
Yatsuga S, Fujita Y, Ishii A, Fukumoto Y, Arahata H, Kakuma T, Kojima T, Ito M et al (2015) Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann Neurol 78(5):814–823. doi:10.1002/ana.24506
Schaefer AM, Phoenix C, Elson JL, McFarland R, Chinnery PF, Turnbull DM (2006) Mitochondrial disease in adults: a scale to monitor progression and treatment. Neurology 66(12):1932–1934. doi:10.1212/01.wnl.0000219759.72195.41
Liu F, Lou J, Zhao D, Li W, Zhao Y, Sun X, Yan C (2015) Dysferlinopathy: mitochondrial abnormalities in human skeletal muscle. The International Journal of Neuroscience. doi:10.3109/00207454.2015.1034801
Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, Ito M (2016) Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatrics & Gerontology International 16(Suppl 1):17–29. doi:10.1111/ggi.12724
Osada M, Park HL, Park MJ, Liu JW, Wu GJ, Trink B, Sidransky D (2007) A p53-type response element in the GDF15 promoter confers high specificity for p53 activation. Biochem Biophys Res Commun 354(4):913–918. doi:10.1016/j.bbrc.2007.01.089
Tiwari KK, Moorthy B, Lingappan K (2015) Role of GDF15 (growth and differentiation factor 15) in pulmonary oxygen toxicity. Toxicology in Vitro an International Journal Published in Association with BIBRA 29(7):1369–1376. doi:10.1016/j.tiv.2015.05.008
Kalko SG, Paco S, Jou C, Rodriguez MA, Meznaric M, Rogac M, Jekovec-Vrhovsek M, Sciacco M et al (2014) Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies. BMC Genomics 15:91. doi:10.1186/1471-2164-15-91
Li PX, Wong J, Ayed A, Ngo D, Brade AM, Arrowsmith C, Austin RC, Klamut HJ (2000) Placental transforming growth factor-beta is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem 275(26):20127–20135. doi:10.1074/jbc.M909580199
Ji K, Zheng J, Lv J, Xu J, Ji X, Luo YB, Li W, Zhao Y et al (2015) Skeletal muscle increases FGF21 expression in mitochondrial disorders to compensate for energy metabolic insufficiency by activating the mTOR-YY1-PGC1alpha pathway. Free Radic Biol Med 84:161–170. doi:10.1016/j.freeradbiomed.2015.03.020
Acknowledgements
This study was supported by grants from the National Natural Science Foundation of China (No. 81171182 and No. 81671235). The authors thank the subjects for their participation, referring doctors, and Ms. Dandan Zhao for her assistance with muscle histology.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Xinbo Ji, Lizhen Zhao, and Kunqian Ji contributed equally to this work.
Rights and permissions
About this article
Cite this article
Ji, X., Zhao, L., Ji, K. et al. Growth Differentiation Factor 15 Is a Novel Diagnostic Biomarker of Mitochondrial Diseases. Mol Neurobiol 54, 8110–8116 (2017). https://doi.org/10.1007/s12035-016-0283-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12035-016-0283-7