[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Role of P2X7 Receptor in an Animal Model of Mania Induced by D-Amphetamine

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The objective of this study was to explore the association between the P2X7 purinergic receptor (P2X7R) and neuroinflammation using a preclinical model of acute bipolar mania. We analyzed the modulatory effects of P2X7R agonist (3′-O-(4-benzoyl)benzoyl-adenosine 5′-triphosphate, BzATP) and antagonists (brilliant blue, BBG and 3-[[5-(2,3 dichlorophenyl)-1H-tetrazol-1-yl]methyl]pyridine hydrochloride, A438079) on assessments related to behavior (locomotor activity), neuroinflammation (interleukin-1 beta, IL-1β; tumor necrosis factor alpha, TNF-α; and interleukin- 6, IL-6), oxidative stress (thiobarbituric acid reactive substances, TBARS) and neuroplasticity (brain-derived neurotrophic factor, BDNF) markers in a pharmacological model of mania induced by acute and chronic treatment with D-amphetamine (AMPH) (2 mg/kg) in mice. An apparent lack of responsiveness to AMPH was observed in terms of the locomotor activity in animals with blocked P2X7R or with genetic deletion of P2X7R in knockout (P2X7R−/−) mice. Likewise, P2X7R participated in the AMPH-induced increase of the proinflammatory and excitotoxic environment, as demonstrated by the reversal of IL-1β, TNF-α, and TBARS levels caused by P2X7R blocking. Our results support the hypothesis that P2X7R plays a role in the neuroinflammation induced by AMPH in a preclinical model of mania, which could explain the altered behavior. The present data suggest that P2X7R may be a therapeutic target related to the neuroinflammation reported in bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim YK, Jung HG, Myint AM, Kim H, Park SH (2007) Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord 104(1–3):91–95. doi:10.1016/j.jad.2007.02.018

    Article  CAS  PubMed  Google Scholar 

  2. Rao JS, Harry GJ, Rapoport SI, Kim HW (2010) Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry 15(4):384–392. doi:10.1038/mp.2009.47

    Article  CAS  PubMed  Google Scholar 

  3. Ortiz-Domínguez A, Hernández ME, Berlanga C, Gutiérrez-Mora D, Moreno J, Heinze G, Pavón L (2007) Immune variations in bipolar disorder: phasic differences. Bipolar Disord 9(6):596–602. doi:10.1111/j.1399-5618.2007.00493.x

    Article  PubMed  Google Scholar 

  4. Drexhage RC, Knijff EM, Padmos RC, Heul-Nieuwenhuijzen L, Beumer W, Versnel MA, Drexhage HA (2010) The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother 10(1):59–76. doi:10.1586/ern.09.144

    Article  CAS  PubMed  Google Scholar 

  5. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14(1):123–130. doi:10.1017/S1461145710000805

    Article  CAS  PubMed  Google Scholar 

  6. Cunha AB, Frey BN, Andreazza AC, Goi JD, Rosa AR, Gonçalves CA, Santin A, Kapczinski F (2006) Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci Lett 398(3):215–219. doi:10.1016/j.neulet.2005.12.085

    Article  CAS  PubMed  Google Scholar 

  7. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yücel M, Gama CS, Dodd S, Dean B, Magalhães PV, Amminger P, McGorry P, Malhi GS (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35(3):804–817. doi:10.1016/j.neubiorev.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  8. Macêdo DS, Medeiros CD, Cordeiro RC, Sousa FC, Santos JV, Morais TA, Hyphantis TN, McIntyre RS, Quevedo J, Carvalho AF (2012) Effects of alpha-lipoic acid in an animal model of mania induced by D-amphetamine. Bipolar Disord 14(7):707–718. doi:10.1111/j.1399-5618.2012.01046.x

    Article  PubMed  Google Scholar 

  9. Yates JW, Meij JT, Sullivan JR, Richtand NM, Yu L (2007) Bimodal effect of amphetamine on motor behaviors in C57BL/6 mice. Neurosci Lett 427(1):66–70. doi:10.1016/j.neulet.2007.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Changes in antioxidant defense enzymes after d-amphetamine exposure: implications as an animal model of mania. Neurochem Res 31(5):699–703. doi:10.1007/s11064-006-9070-6

    Article  CAS  PubMed  Google Scholar 

  11. Basso AM, Bratcher NA, Harris RR, Jarvis MF, Decker MW, Rueter LE (2009) Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders. Behav Brain Res 198(1):83–90. doi:10.1016/j.bbr.2008.10.018

    Article  CAS  PubMed  Google Scholar 

  12. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067. doi:10.1152/physrev.00015.2002

    Article  CAS  PubMed  Google Scholar 

  13. Sun SH (2010) Roles of P2X7 receptor in glial and neuroblastoma cells: the therapeutic potential of P2X7 receptor antagonists. Mol Neurobiol 41(2–3):351–355. doi:10.1007/s12035-010-8120-x

    Article  CAS  PubMed  Google Scholar 

  14. Barden N, Harvey M, Gagné B, Shink E, Tremblay M, Raymond C, Labbé M, Villeneuve A, Rochette D, Bordeleau L, Stadler H, Holsboer F, Müller-Myhsok B (2006) Analysis of single nucleotide polymorphisms in genes in the chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 141B(4):374–382. doi:10.1002/ajmg.b.30303

    Article  CAS  PubMed  Google Scholar 

  15. Bhattacharya A, Wang Q, Ao H, Shoblock JR, Lord B, Aluisio L, Fraser I, Nepomuceno D, Neff RA, Welty N, Lovenberg TW, Bonaventure P, Wickenden AD, Letavic MA (2013) Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br J Pharmacol 170(3):624–640. doi:10.1111/bph.12314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gubert C, Rodrigo Fries G, Wollenhaupt de Aguiar B, Ribeiro Rosa A, Busnello JV, Ribeiro L, Bueno Morrone F, Oliveira Battastini AM, Kapczinski F (2013) The P2X7R purinergic receptor as a molecular target in bipolar disorder. Neuropsychiatr Neuropsychol 8(1):1

    Google Scholar 

  17. Csölle C, Andó RD, Kittel Á, Gölöncsér F, Baranyi M, Soproni K, Zelena D, Haller J, Németh T, Mócsai A, Sperlágh B (2013) The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice. Int J Neuropsychopharmacol 16(1):213–233. doi:10.1017/S1461145711001933

    Article  PubMed  Google Scholar 

  18. NIH (2011) Guide for the care and use of laboratory animals—National Research Council 8th edn. The National Academies Press, Washington, DC

    Google Scholar 

  19. Engel T, Gomez-Villafuertes R, Tanaka K, Mesuret G, Sanz-Rodriguez A, Garcia-Huerta P, Miras-Portugal MT, Henshall DC, Diaz-Hernandez M (2012) Seizure suppression and neuroprotection by targeting the purinergic P2X7 receptor during status epilepticus in mice. FASEB J 26(4):1616–1628. doi:10.1096/fj.11-196089

    Article  CAS  PubMed  Google Scholar 

  20. Frey BN, Andreazza AC, Ceresér KM, Martins MR, Petronilho FC, de Souza DF, Tramontina F, Gonçalves CA, Quevedo J, Kapczinski F (2006) Evidence of astrogliosis in rat hippocampus after D-amphetamine exposure. Prog Neuropsychopharmacol Biol Psychiatry 30(7):1231–1234. doi:10.1016/j.pnpbp.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  21. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, Fang YY, Zhang J, Li SJ, Xiong WC, Yan HC, Gao YB, Liu JH, Li XW, Sun LR, Zeng YN, Zhu XH, Gao TM (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 19(6):773–777. doi:10.1038/nm.3162

    Article  CAS  PubMed  Google Scholar 

  22. Maciel IS, Silva RB, Morrone FB, Calixto JB, Campos MM (2013) Synergistic effects of celecoxib and bupropion in a model of chronic inflammation-related depression in mice. PLoS One 8(9):e77227. doi:10.1371/journal.pone.0077227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loss CM, Córdova SD, de Oliveira DL (2012) Ketamine reduces neuronal degeneration and anxiety levels when administered during early life-induced status epilepticus in rats. Brain Res 1474:110–117. doi:10.1016/j.brainres.2012.07.046

    Article  CAS  PubMed  Google Scholar 

  24. Gubert C, Stertz L, Pfaffenseller B, Panizzutti BS, Rezin GT, Massuda R, Streck EL, Gama CS, Kapczinski F, Kunz M (2013) Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J Psychiatr Res 47(10):1396–1402. doi:10.1016/j.jpsychires.2013.06.018

    Article  PubMed  Google Scholar 

  25. Barichello T, Generoso JS, Simões LR, Ceretta RA, Dominguini D, Ferrari P, Gubert C, Jornada LK, Budni J, Kapczinski F, Quevedo J (2014) Vitamin B6 prevents cognitive impairment in experimental pneumococcal meningitis. Exp Biol Med (Maywood). doi:10.1177/1535370214535896

    Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  27. Abkevich V, Camp NJ, Hensel CH, Neff CD, Russell DL, Hughes DC, Plenk AM, Lowry MR, Richards RL, Carter C, Frech GC, Stone S, Rowe K, Chau CA, Cortado K, Hunt A, Luce K, O'Neil G, Poarch J, Potter J, Poulsen GH, Saxton H, Bernat-Sestak M, Thompson V, Gutin A, Skolnick MH, Shattuck D, Cannon-Albright L (2003) Predisposition locus for major depression at chromosome 12q22–12q23.2. Am J Hum Genet 73(6):1271–1281. doi:10.1086/379978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilot LC, Bernardi A, Frozza RL, Marques AL, Cimarosti H, Salbego C, Rocha E, Battastini AM (2007) Lithium and valproate protect hippocampal slices against ATP-induced cell death. Neurochem Res 32(9):1539–1546. doi:10.1007/s11064-007-9348-3

    Article  CAS  PubMed  Google Scholar 

  29. Melega WP, Williams AE, Schmitz DA, DiStefano EW, Cho AK (1995) Pharmacokinetic and pharmacodynamic analysis of the actions of D-amphetamine and D-methamphetamine on the dopamine terminal. J Pharmacol Exp Ther 274(1):90–96

    CAS  PubMed  Google Scholar 

  30. Gonçalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF, Malva JO, Macedo TR, Silva AP (2008) Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain. Ann N Y Acad Sci 1139:103–111. doi:10.1196/annals.1432.043

    Article  PubMed  Google Scholar 

  31. Munkholm K, Braüner JV, Kessing LV, Vinberg M (2013) Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res 47(9):1119–1133. doi:10.1016/j.jpsychires.2013.05.018

    Article  PubMed  Google Scholar 

  32. Monif M, Burnstock G, Williams DA (2010) Microglia: proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 42(11):1753–1756. doi:10.1016/j.biocel.2010.06.021

    Article  CAS  PubMed  Google Scholar 

  33. Di Virgilio F (2007) Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol Sci 28(9):465–472. doi:10.1016/j.tips.2007.07.002

    Article  PubMed  Google Scholar 

  34. Skaper SD, Debetto P, Giusti P (2010) The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 24(2):337–345. doi:10.1096/fj.09-138883

    Article  CAS  PubMed  Google Scholar 

  35. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006) The P2X7 receptor: a key player in IL-1 processing and release. J Immunol 176(7):3877–3883

    Article  CAS  PubMed  Google Scholar 

  36. Lucattelli M, Cicko S, Müller T, Lommatzsch M, De Cunto G, Cardini S, Sundas W, Grimm M, Zeiser R, Dürk T, Zissel G, Sorichter S, Ferrari D, Di Virgilio F, Virchow JC, Lungarella G, Idzko M (2011) P2X7 receptor signaling in the pathogenesis of smoke-induced lung inflammation and emphysema. Am J Respir Cell Mol Biol 44(3):423–429. doi:10.1165/rcmb.2010-0038OC

    Article  CAS  PubMed  Google Scholar 

  37. Sperlágh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78(6):327–346. doi:10.1016/j.pneurobio.2006.03.007

    Article  PubMed  Google Scholar 

  38. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813(5):878–888. doi:10.1016/j.bbamcr.2011.01.034

    Article  CAS  PubMed  Google Scholar 

  39. Ferrarese C, Beal MF (2004) Excitotoxicity in neurological diseases: New therapeutic challenge. Kluwer Academic Print, Boston

  40. Blaylock R (2004) Excitotoxicity: a possible central mechanism in fluoride neurotoxicity. Fluoride 37(4):13

    Google Scholar 

  41. Frey BN, Martins MR, Petronilho FC, Dal-Pizzol F, Quevedo J, Kapczinski F (2006) Increased oxidative stress after repeated amphetamine exposure: possible relevance as a model of mania. Bipolar Disord 8(3):275–280. doi:10.1111/j.1399-5618.2006.00318.x

    Article  CAS  PubMed  Google Scholar 

  42. Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J (2010) Role of oxidative stress in the pathophysiology of bipolar disorder. Neurochem Res 35(9):1295–1301. doi:10.1007/s11064-010-0195-2

    Article  CAS  PubMed  Google Scholar 

  43. Martel-Gallegos G, Casas-Pruneda G, Ortega-Ortega F, Sánchez-Armass S, Olivares-Reyes JA, Diebold B, Pérez-Cornejo P, Arreola J (2013) Oxidative stress induced by P2X7 receptor stimulation in murine macrophages is mediated by c-Src/Pyk2 and ERK1/2. Biochim Biophys Acta 1830(10):4650–4659. doi:10.1016/j.bbagen.2013.05.023

    Article  CAS  PubMed  Google Scholar 

  44. Apolloni S, Parisi C, Pesaresi MG, Rossi S, Carrì MT, Cozzolino M, Volonté C, D'Ambrosi N (2013) The NADPH oxidase pathway is dysregulated by the P2X7 receptor in the SOD1-G93A microglia model of amyotrophic lateral sclerosis. J Immunol 190(10):5187–5195. doi:10.4049/jimmunol.1203262

    Article  CAS  PubMed  Google Scholar 

  45. Frey BN, Andreazza AC, Ceresér KM, Martins MR, Valvassori SS, Réus GZ, Quevedo J, Kapczinski F (2006) Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. Life Sci 79(3):281–286. doi:10.1016/j.lfs.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  46. Trang T, Beggs S, Wan X, Salter MW (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 29(11):3518–3528. doi:10.1523/JNEUROSCI. 5714-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155(7):1596–1609. doi:10.1016/j.cell.2013.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weitz TM, Town T (2012) Microglia in Alzheimer's disease: it's all about context. Int J Alzheimers Dis 2012:314185. doi:10.1155/2012/314185

    PubMed  PubMed Central  Google Scholar 

  49. Bayer TA, Buslei R, Havas L, Falkai P (1999) Evidence for activation of microglia in patients with psychiatric illnesses. Neurosci Lett 271(2):126–128

    Article  CAS  PubMed  Google Scholar 

  50. Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68(4):368–376. doi:10.1016/j.biopsych.2010.05.024

    Article  PubMed  Google Scholar 

  51. Stertz L, Magalhães PV, Kapczinski F (2013) Is bipolar disorder an inflammatory condition? The relevance of microglial activation. Curr Opin Psychiatr 26(1):19–26. doi:10.1097/YCO.0b013e32835aa4b4

    Article  Google Scholar 

  52. Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39(1):3–18. doi:10.1111/nan.12011

    Article  CAS  PubMed  Google Scholar 

  53. Cherry JD, Olschowka JA, O'Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. doi:10.1186/1742-2094-11-98

    Article  PubMed  PubMed Central  Google Scholar 

  54. El-Mallakh RS, Decker S, Morris M, Li XP, Huff MO, El-Masri MA, Levy RS (2006) Efficacy of olanzapine and haloperidol in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 30(7):1261–1264. doi:10.1016/j.pnpbp.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  55. Krishnan V, Nestler EJ (2010) Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167(11):1305–1320. doi:10.1176/appi.ajp.2009.10030434

    Article  PubMed  PubMed Central  Google Scholar 

  56. Frey BN, Valvassori SS, Réus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31(5):326–332

    PubMed  PubMed Central  Google Scholar 

  57. Valvassori SS, Budni J, Varela RB, Quevedo J (2013) Contributions of animal models to the study of mood disorders. Rev Bras Psiquiatr 35(Suppl 2):S121–S131. doi:10.1590/1516-4446-2013-1168

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

CG, GRF, and PF are recipients of scholarships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). BP is a scholarship recipient from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). This study was supported by the National Science and Technology Institute for Translational Medicine, funded by CNPq and by Fundo de Incentivo à Pesquisa do Hospital de Clínicas de Porto Alegre (FIPE-HCPA).

Conflict of Interest

CG, GRF, BP, PF, RCS, and FBM declare no possible conflicts of interest, financial or otherwise, or grants or other forms of financial support. AMOB has received grant/research from CNPq. FK has received grant/research support from Astra-Zeneca, Eli Lilly, Janssen-Cilag, Servier, CNPq, CAPES, NARSAD, and the Stanley Medical Research Institute; has been a member of speakers boards for Astra-Zeneca, Eli Lilly, Janssen, and Servier; and has served as a consultant for Servier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Oliveira Battastini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubert, C., Fries, G.R., Pfaffenseller, B. et al. Role of P2X7 Receptor in an Animal Model of Mania Induced by D-Amphetamine. Mol Neurobiol 53, 611–620 (2016). https://doi.org/10.1007/s12035-014-9031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9031-z

Keywords

Navigation