Abstract
The sharing of open-access neuroimaging data has increased significantly during the last few years. Sharing neuroimaging data is crucial to accelerating scientific advancement, particularly in the field of neuroscience. A number of big initiatives that will increase the amount of available neuroimaging data are currently in development. The Big Brain Data Initiative project was started by Universiti Sains Malaysia as the first neuroimaging data repository platform in Malaysia for the purpose of data sharing. In order to ensure that the neuroimaging data in this project is accessible, usable, and secure, as well as to offer users high-quality data that can be consistently accessed, we first came up with good data stewardship practices. Then, we developed MyneuroDB, an online repository database system for data sharing purposes. Here, we describe the Big Brain Data Initiative and MyneuroDB, a data repository that provides the ability to openly share neuroimaging data, currently including magnetic resonance imaging (MRI), electroencephalography (EEG), and magnetoencephalography (MEG), following the FAIR principles for data sharing.
Similar content being viewed by others
Data Availability
The data described in this article will be openly available in the MyNeuroDB at http://myneurodb.cs.usm.my/.
References
Abdullah, J. M. (2019). Neurosciences at Universiti Sains Malaysia represent Malaysia to support global precision brain health. Malaysian Journal of Medical Sciences, 26(3), 1–23. https://doi.org/10.21315/mjms2019.26.3.1
Arend, D., Psaroudakis, D., Memon, J. A., Rey-Mazón, E., Schüler, D., Szymanski, J. J., et al. (2022). From data to Knowledge – Big Data Needs Stewardship, a plant phenomics perspective. The Plant Journal, 111(2), 335–347. https://doi.org/10.1111/tpj.15804
Arroyo Lazo, M. A. (2018). Schwab, Klaus: The Fourth Industrial Revolution. ginebra: World economic forum, 2016, 172 pp. Economía, 41(81), 194–197. https://doi.org/10.18800/economia.201801.012
Austin, C. C., Brown, S., Fong, N., Humphrey, C., Leahey, A., & Webster, P. (2016). Research data repositories: Review of current features, gap analysis, and recommendations for minimum requirements. IASSIST Quarterly, 39(4), 24. https://doi.org/10.29173/iq904
Bertino, E. Bruschi, D., Franzoni, S., Nai-Fovino, I., & Valtolina, S. (2005). Threat modelling for SQL Servers. IFIP — The International Federation for Information Processing, 159–171. https://doi.org/10.1007/0-387-24486-7_12.
Boeckhout, M., Zielhuis, G. A., & Bredenoord, A. L. (2018). The Fair Guiding Principles for Data Stewardship: Fair Enough? European Journal of Human Genetics, 26(7), 931–936. https://doi.org/10.1038/s41431-018-0160-0
Cai, W., Ryali, S., Chen, T., Li, C.-S.R., & Menon, V. (2014). Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: Evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. Journal of Neuroscience, 34(44), 14652–14667. https://doi.org/10.1523/jneurosci.3048-14.2014
Carp, J. (2012). On the plurality of (methodological) worlds: Estimating the analytic flexibility of fmri experiments. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2012.00149
Chandravadia, N., Liang, D., Schjetnan, A. G., Carlson, A., Faraut, M., Chung, J. M., et al (2020). A NWB-based dataset and processing pipeline of human single-neuron activity during a declarative memory task. Scientific Data, 7(1). https://doi.org/10.1038/s41597-020-0415-9
Dijkers, M. P. (2019). A beginner’s Guide to Data Stewardship and data sharing. Spinal Cord, 57(3), 169–182. https://doi.org/10.1038/s41393-018-0232-6
Eickhoff, S., Nichols, T. E., Van Horn, J. D., & Turner, J. A. (2016). Sharing the wealth: Neuroimaging Data Repositories. NeuroImage, 124, 1065–1068. https://doi.org/10.1016/j.neuroimage.2015.10.079
Gao, P., Dong, H.-M., Liu, S.-M., Fan, X.-R., Jiang, C., Wang, Y.-S., et al. (2022). A Chinese multi-modal neuroimaging data release for increasing diversity of human brain mapping. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01413-3
Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., et al. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3(1). https://doi.org/10.1038/sdata.2016.44
Hanson, K. A., Almeida, N., Traylor, J. I., Rajagopalan, D., & Johnson, J. (2020). Profile of data sharing in the clinical neurosciences. Cureus. https://doi.org/10.7759/cureus.9927
Hartter, J., Ryan, S. J., MacKenzie, C. A., Parker, J. N., & Strasser, C. A. (2013). Spatially explicit data: Stewardship and ethical challenges in science. PLoS Biology, 11(9). https://doi.org/10.1371/journal.pbio.1001634
Ibrahim, S. A. S., Hamzah, N., Wahab, A. R. A., Abdullah, J. M., Malim, N. H. A. H., Sumari, P., et al. (2020). Big brain data initiative in universiti sains Malaysia: Challenges in brain mapping for Malaysia. Malaysian Journal of Medical Sciences, 27(4), 1–8. https://doi.org/10.21315/mjms2020.27.4.1
Jakob, R. (2017). Disease Classification. International Encyclopedia of Public Health (Second Edition), 332–337. https://doi.org/10.1016/B978-0-12-803678-5.00116-8
Joseph, A., & Chandra, J. (2022). Machine learning approaches for efficient analysis of neuroimaging techniques. SHS Web of Conferences, 139, 03027. https://doi.org/10.1051/shsconf/202213903027
Jwa, A., & Poldrack, R. (2022). The spectrum of data sharing policies in neuroimaging data repositories. Human Brain Mapping, 43(8), 2707–2721. https://doi.org/10.1002/hbm.25803
Keator, D. B., Helmer, K., Steffener, J., Turner, J. A., Van Erp, T. G. M., Gadde, S., et al. (2013). Towards structured sharing of raw and derived neuroimaging data across existing resources. NeuroImage, 82, 647–661. https://doi.org/10.1016/j.neuroimage.2013.05.094
Kellmeyer, P. (2018). Big Brain Data: On the responsible use of brain data from clinical and consumer-directed Neurotechnological devices. Neuroethics, 14(1), 83–98. https://doi.org/10.1007/s12152-018-9371-x
Khan, S. A. (2017). A stride model based threat modelling using unified and-or fuzzy operator for computer network security. International Journal of Computing and Network Technology, 5(1), 13–20. https://doi.org/10.12785/ijcnt/050103
Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., et al. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603(7902), 654–660. https://doi.org/10.1038/s41586-022-04492-9
Markiewicz, C. J., Gorgolewski, K. J., Feingold, F., Blair, R., Halchenko, Y. O., Miller, E., et al. (2021). The OpenNeuro resource for sharing of Neuroscience Data. eLife. https://doi.org/10.7554/elife.71774
Neuroimaging techniques and what a brain image can tell us [Internet]. Technology Networks. Available at: https://www.technologynetworks.com/tn/articles/neuroimaging-techniques-and-what-a-brain-image-can-tell-us-363422. Accessed 05 Dec 2022.
Pacurar, E. E., Sethi, S. K., Habib, C., Laze, M. O., Martis-Laze, R., & Haacke, E. M. (2016). Database integration of protocol-specific neurological imaging datasets. NeuroImage, 124, 1220–1224. https://doi.org/10.1016/j.neuroimage.2015.04.066
Peng, G. (2018). The state of assessing data stewardship maturity – an overview. Science Journal. https://doi.org/10.5334/dsj-2018-007
Poldrack, R. A., & Gorgolewski, K. J. (2014). Making big data open: Data sharing in neuroimaging. Nature Neuroscience, 17(11), 1510–1517. https://doi.org/10.1038/nn.3818
Poline, J. B., Breeze, J. L., Ghosh, S., Gorgolewski, K., Yaroslav, O. H., Hanke, M., et al. (2012). Data sharing in neuroimaging research. Frontiers in Neuroinformatics. https://doi.org/10.3389/fninf.2012.00009
Rosenbaum, S. (2010). Data governance and stewardship: Designing data stewardship entities and advancing data access. Health Services Research, 45(5p2), 1442–55. https://doi.org/10.1111/j.1475-6773.2010.01140.x
Rübel, O., Dougherty, M., Prabhat, Denes, P., Conant, D., Chang, E.F., et al. (2016). Methods for specifying scientific data standards and modeling relationships with applications to neuroscience. Frontiers in Neuroinformatics. https://doi.org/10.3389/fninf.2016.00048
Sumari, P., Idris, Z., & Abdullah, J.M. (2017). We must invest in applied knowledge of computational neurosciences and neuroinformatics as an important future in Malaysia: The Malaysian brain mapping project. Malaysian Journal of Medical Sciences, 24(1):1–9. https://doi.org/10.21315/mjms2017.24.1.1
Welcome to the Global Brain Consortium website. Global Brain Consortium Homepage. Available at: https://globalbrainconsortium.org/. Accessed 05 Dec 2022.
White, T., Blok, E., & Calhoun, V. D. (2020). Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Human Brain Mapping, 43(1), 278–291. https://doi.org/10.1002/hbm.25120
Xue, G., Chen, C., Lu, Z.-L., & Dong, Q. (2010). Brain imaging techniques and their applications in decision-making research. Acta Psychologica Sinica, 42(1), 120–137. https://doi.org/10.3724/sp.j.1041.2010.00120
Zhang, J., Chen, K., Wang, D., Gao, F., Zheng, Y., & Yang, M. (2020). Editorial: Advances of neuroimaging and data analysis. Frontiers in Neurology, 11. https://doi.org/10.3389/fneur.2020.00257
Zuo, X. N., Anderson, J. S., Bellec, P., Birn, R. M., Biswal, B. B., Blautzik, J., et al. (2014). An open science resource for establishing reliability and reproducibility in functional connectomics. Scientific Data, 1, 1–13. https://doi.org/10.1038/sdata.2014.49
Acknowledgements
We would like to express our gratitude to all the USM’s staff who participated in this Big Brain Data Initiative project. We are also grateful to Hospital USM for approving our request to collect data for data sharing purposes. Thank you to the School of Computer Sciences, USM for hosting MyNeuroDB.
Funding
The author(s) received no financial support for the project, authorship, and/or publication of this manuscript.
Author information
Authors and Affiliations
Contributions
Conception and design: Nurfaten Hamzah, Nurul Hashimah Ahamed Hassain Malim. Drafting of the manuscript: Nurfaten Hamzah. Critical revision of the manuscript: All authors. All authors read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of Interest
The authors declared no potential conflicts of interest with respect to the authorship and/or publication of this manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hamzah, N., Malim, N.H.A.H., Abdullah, J.M. et al. Big Brain Data Initiatives in Universiti Sains Malaysia: Data Stewardship to Data Repository and Data Sharing. Neuroinform 21, 589–600 (2023). https://doi.org/10.1007/s12021-023-09637-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-023-09637-3