[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Atlas-Based Classification Algorithms for Identification of Informative Brain Regions in fMRI Data

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Multi-voxel pattern analysis (MVPA) has been successfully applied to neuroimaging data due to its larger sensitivity compared to univariate traditional techniques. Searchlight is the most widely employed approach to assign functional value to different regions of the brain. However, its performance depends on the size of the sphere, which can overestimate the region of activation when a large sphere size is employed. In the current study, we examined the validity of two different alternatives to Searchlight: an atlas-based local averaging method (ABLA, Schrouff et al. Neuroinformatics 16, 117–143, 2013a) and a Multi-Kernel Learning (MKL, Rakotomamonjy et al. Journal of Machine Learning 9, 2491–2521, 2008) approach, in a scenario where the goal is to find the informative brain regions that support certain mental operations. These methods employ weights to measure the informativeness of a brain region and highly reduce the large computational cost that Searchlight entails. We evaluated their performance in two different scenarios where the differential BOLD activation between experimental conditions was large vs. small, and employed nine different atlases to assess the influence of diverse brain parcellations. Results show that both methods were able to localize informative regions when differences between conditions were large, demonstrating a large sensitivity and stability in the identification of regions across atlases. Moreover, the sign of the weights reported by these methods provided the directionality of univariate approaches. However, when differences were small, only ABLA localized informative regions. Thus, our results show that atlas-based methods are useful alternatives to Searchlight, but that the nature of the classification to perform should be taken into account when choosing the specific method to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdulrahman, H., & Henson, R. N. (2016). Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis. NeuroImage, 125, 756–766.

    Article  PubMed  Google Scholar 

  • Adeli, E., Guorong, W., Saghafi, B., An, L., Shi, F., & Shen, D. (2017). Kernel-based joint feature selection and max-margin classification for early diagnosis of Parkinson’s disease. Scientific Reports, 7, 41069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arco, J.E., Ramírez, J., Puntonet, C.G., Górriz, J.M., Ruz, M., 2015. Short-term prediction of MCI to AD conversion based on longitudinal MRI analysis and neuropsychological tests. Innovation in medicine healthcare, 385-394.

  • Arco, J.E., González-García, C., Ramírez, J., Ruz, M., 2016. Comparison of different methods for brain decoding from fMRI beta maps. Poster presented at 22nd annual meeting of the Organization for Human Brain Mapping, Geneve, (Switzerland).

  • Arco, J. E., González-García, C., Díaz-Gutiérrez, P., Ramírez, J., & Ruz, M. (2018). Influence of activation pattern estimates and statistical significance tests in fMRI decoding analysis. Journal of Neuroscience Methods, 308, 248–260.

    Article  PubMed  Google Scholar 

  • Balci, S. K., Sabuncu, M. R., Yoo, J., Ghosh, S. S., Whitfield-Gabrieli, S., Gabrieli, J. D., & Golland, P. (2008). Prediction of successful memory encoding from fMRI data. Med Image Comput Assist Inter, 11, 97–104.

    Google Scholar 

  • Baldassarre, L., Pontil, M., & Mourão-Miranda, J. (2017). Combining accuracy and stability for model selection in brain decoding. Frontiers in Neuroscience, 11, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellec, P., Rosa-Neto, P., Lyttelton, O. C., Benali, H., & Evans, A. C. (2010). Multi-level bootstrap analysis of stable clusters in resting-state fMRI. NeuroImage, 51, 1126–1139.

    Article  PubMed  Google Scholar 

  • Bennett, K.P., Blue, J.A., 1998. A support vector machine approach to decision trees. 1998 IEEE international joint conference in neural networks proceedings.

  • Bhandari, A., Gagne, C., & Badre, D. (2018). Just above chance: Is it harder to decode information from prefrontal cortex hemodynamic activity patterns? Journal of Cognitive Neuroscience, 30(10), 1473–1498.

    Article  PubMed  Google Scholar 

  • Blankertz, B., Dornhege, G., Kraudelat, M., Müller, K. R., & Curio, G. (2007). The non-invasive Berlin brain-computer Interface: Fast acquisition of effective performance in untrained subjects. NeuroImage, 37(2), 539–550.

    Article  PubMed  Google Scholar 

  • Bode, S., & Haynes, J.-D. (2009). Decoding sequential stages of task preparation in the human brain. NeuroImage, 45(2), 606–613.

    Article  PubMed  Google Scholar 

  • Boser, B.E., Guyon, I., Vapnik, V., 1992. A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on computational learning theory, 144-152.

  • Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M., 2010. The balanced accuracy and its posterior distribution. 2010 20th international conference on pattern recognition.

  • Brodersen, K. H., Schofield, T. M., Leff, A. P., Ong, C. S., Lomakina, E. I., Buhmann, J. M., & Stephan, K. E. (2011). Generative embedding for model-based classification of fMRI data. PLoS Computational Biology, 7(6), e1002079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.

    Article  Google Scholar 

  • Chanel, G., Pichon, S., Conty, L., Berthoz, S., Chevallier, C., & Grèzes, J. (2016). Classification of autistic individuals and controls using cross-task characterization of fMRI activity. NeuroImage: Clinical, 10, 76–88.

    Google Scholar 

  • Chang, L. J., & Sanfey, A. G. (2013). Great expectations: Neural computations underlying the use of social norms in decision-making. Social Cognitive and Affective Neuroscience, 8(3), 277–284.

    Article  PubMed  Google Scholar 

  • Chen, Y., Namburi, P., Elliott, L., Heinzle, J., Soon, C., Chee, M., & Haynes, J. (2011). Cortical surface-based searchlight decoding. NeuroImage, 56, 582–592.

    Article  PubMed  Google Scholar 

  • Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017). Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience, 20(1), 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Choi, H., Ha, S., Im, H. J., Paek, S. H., & Lee, D. S. (2017). Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging. NeuroImage: Clinical, 16, 586–594.

    Article  Google Scholar 

  • Cichy, R. M., Pantazis, D., & Oliva, A. (2016). Similarity-based fusion of MEG and fMRI reveals spatio-temporal dynamics in human cortex during visual object recognition. Cerebral Cortex, 26(8), 3563–3579.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coutanche, M. N., Thompson-Schill, S. L., & Schultz, R. T. (2011). Multi-voxel pattern analysis of MRI data predicts clinical symptom severity. NeuroImage, 57(1), 113–123.

    Article  PubMed  Google Scholar 

  • Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) “brain reading”: Detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19, 261–270.

    Article  PubMed  Google Scholar 

  • Dai, D., Wang, J., Hua, J., & He, H. (2012). Classification of ADHD children through multimodal magnetic resonance imaging. Frontiers in Systems Neuroscience, 6(63).

  • De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., & Formisano, E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage, 43, 44–58.

    Article  PubMed  Google Scholar 

  • Del Gaizo, J., Mofrad, N., Jensen, J. H., Clark, D., Glenn, R., Helpern, J., & Bonilha, L. (2017). Using machine learning to classify temporal lobe epilepsy based on diffusion MRI. Brain and Behavior: A Cognitive Neuroscience Perspective, 7(10), e00801.

    Article  Google Scholar 

  • Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968–980.

    Article  PubMed  Google Scholar 

  • Di Russo, F., Berchicci, M., Bozzacchi, C., Perri, R. L., Pitzalis, S., & Spinelli, D. (2017). Beyond the “Bereitschaftspotential”: Action preparation behind cognitive functions. Neuroscience and Biobehavioral Reviews, 78, 57–81.

    Article  PubMed  Google Scholar 

  • Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329(5997), 1358–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois, J., de Berker, A. O., & Tsao, D. Y. (2015). Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA. The Journal of Neuroscience, 35(6), 2791–2802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etzel, J. A., Zacks, J. M., & Braver, T. S. (2013). Searchlight analysis: Promise, pitfalls, and potential. NeuroImage, 78, 261–269.

    Article  PubMed  Google Scholar 

  • Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR: A library for large linear classification. Journal March Learning Res, 9, 1871–1874.

    Google Scholar 

  • Fan, L., Wang, J., Zhang, Y., Han, W., Yu, C., & Jiang, T. (2014). Connectivity-based parcellation of the human temporal pole using diffusion tensor imaging. Cerebral Cortex, 24, 3365–3378.

    Article  PubMed  Google Scholar 

  • Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016). The human Brainnetome atlas: A new brain atlas based on connectional architecture. Cerebral Cortex, 26, 3508–3526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Filippone, M., Marquand, A. F., Blain, C. R. V., Williams, S. C. R., Mourão-Miranda, J., & Girolami, M. (2013). Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaging data modalities. The Annals of Applied Statistics, 6(4), 1883–1905.

    Article  Google Scholar 

  • Forman, S., Cohen, J., Fitzgerald, M., Eddy, W., Mintum, M., & Noll, D. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magnetic Resonance in Medicine, 33, 636–647.

    Article  CAS  PubMed  Google Scholar 

  • Fort, G., & Lambert-Lacroix, S. (2005). Classification using partial least squares with penalized logistic regression. Bioinformatics, 21, 1104–1111.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189–210.

    Article  Google Scholar 

  • Gabay, A. S., Radua, J., Kempton, M. J., & Mehta, M. A. (2014). The ultimatum game and the brain: A meta-analysis. Neuroscience and Biobehavioral Reviews, 47, 549–558.

    Article  PubMed  Google Scholar 

  • Gaertig, C., Moser, A., Alguacil, S., & Ruz, M. (2012). Social information and economic decisión-making in the ultimatum game. Frontiers in Neuroscience, 6(103).

  • Gaonkar, B., Shinohara, R., Davatzikos, C., & Initiative, A. D. N. (2015). Interpreting support vector machine models for multivariate group analysis in neuroimaging. Medical Image Analysis, 24(1), 190–204.

    Article  PubMed  PubMed Central  Google Scholar 

  • González-García, C., Mas-Herrero, E., de Diego-Balaguer, R., & Ruz, M. (2016). Task-specific preparatory neural activations in low-inference contexts. Brain Structure & Function, 8, 3997–4006.

    Article  Google Scholar 

  • González-García, C., Arco, J. E., Palenciano, A. F., Ramírez, J., & Ruz, M. (2017). Encoding, preparation and implementation of novel complex verbal instructions. NeuroImage, 148, 264–273.

    Article  PubMed  Google Scholar 

  • Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J., Ortega, M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J. M., Coalson, R. S., Nguyen, A. L., McDermott, K. B., Shimony, J. S., Snyder, A. Z., Schlaggar, B. L., Petersen, S. E., Nelson, S. M., & Dosenbach, N. U. F. (2017). Precision functional mapping of individual human brains. Neuron, 95(4), 791–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grecucci, A., Giorgetta, C., van’t Wout, M., Bonini, N., & Sanfey, A. G. (2013). Reappraising the ultimatum: An fMRI study of emotion regulation and decision making. Cerebral Cortex, 23(2), 399–410.

    Article  PubMed  Google Scholar 

  • Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87, 96–110.

    Article  PubMed  Google Scholar 

  • Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425–2430.

    Article  CAS  PubMed  Google Scholar 

  • Haxby, J. V., Connolly, A. C., & Guntupalli, J. S. (2014). Decoding neural representational spaces using multivariate pattern analysis. Annual Review of Neuroscience, 37, 435–456.

    Article  CAS  PubMed  Google Scholar 

  • Haynes, J.-D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience, 8(5), 686–691.

    Article  CAS  PubMed  Google Scholar 

  • Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews. Neuroscience, 7, 523–534.

    Article  CAS  PubMed  Google Scholar 

  • Hebart, M. N., & Baker, C. I. (2017). Deconstructing multivariate decoding for the study of brain function. NeuroImage, 180, 4–18. https://doi.org/10.1016/j.neuroimage.2017.08.005.

    Article  PubMed  Google Scholar 

  • Henson, R., 2005. Design efficiency in fMRI. URL http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency# VII._Should_I_treat_my_trials_as_events_or_epochs_.3F.

  • Illan, I. A., Górriz, J. M., Ramírez, J., & Meyer-Base, A. (2014). Spatial component analysis of fMRI ata for Alzheimer’s disease diagnosis: A Bayesian network approach. Frontiers in Computational Neuroscience, 26, 156.

    Google Scholar 

  • Joliot, M., Jobard, G., Naveau, M., Delcroix, N., Petit, L., Zago, L., Crivello, F., Mellet, E., Mazoyer, B., & Tzourio-Mazoyer, N. (2015). AICHA: An atlas of intrinsic connectivity of homotopic areas. Journal of Neuroscience Methods, 254, 46–59.

    Article  PubMed  Google Scholar 

  • Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khedher, L., Illán, I.A., Górriz, J.M., Ramírez, J., Meyer-Baese, A., 2017. Independent component analysis-support vector machine-based computer aided diagnosis system for Alzheimer’s disease with visual support. International journal of neural systems 27(3), 8 1650050.

  • Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. PNAS, 103, 3863–3868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmanovic, B., Rigoux, L., & Tittgemeyer, M. (2018). Influence of vmPFC on dmPFC predicts valence-guided belief formation. The Journal of Neuroscience, 38(37), 7996–8010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanckriet, G. R. G., Cristianini, N., Bartlett, P., El Ghaoui, L., & Jordan, M. I. (2004). Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5, 27–72.

    Google Scholar 

  • Lindquist, K., Satpute, A., Wager, T., Weber, J., & Barrett, L. (2015). The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex, 26(5), 1910–1922.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Stufflebeam, S. M., Sepulcre, J., Hedden, T., & Buckner, R. L. (2009). Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proceedings of the National Academy of Sciences, 106(48), 20499–20503.

    Article  Google Scholar 

  • Liu, H., Qin, W., Li, W., Fan, L., Wang, J., Jiang, T., & Yu, C. (2013). Connectivity-based parcellation of the human frontal pole with diffusion tensor imaging. The Journal of Neuroscience, 33, 6782–6790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loose, L. S., Wisniewski, D., Rusconi, M., Goschke, T., & Haynes, J.-D. (2017). Switch-independent task representations in frontal and parietal lobe. The Journal of Neuroscience, 37(33), 8033–8042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misaki, M., Kim, Y., Bandettini, P., & Kriegeskorte, N. (2010). Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. NeuroImage, 53(1), 103–118.

    Article  PubMed  Google Scholar 

  • Moser, A., Gaertig, C., & Ruz, M. (2014). Social information and personal interests modulate neural activity during economic decision-making. Frontiers in Human Neuroscience, 8, 31.

    PubMed  PubMed Central  Google Scholar 

  • Mourão-Miranda, J., Bokde, A. L. W., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional fMRI data. NeuroImage, 25, 980–995.

    Article  Google Scholar 

  • Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi- voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10, 424–430.

    Article  PubMed  Google Scholar 

  • Nurse, E. S., Karoly, P. J., Grayden, D. B., & Freestone, D. R. (2015). A generalizable brain-computer-Interface (BCI) using machine learning for feature discovery. PLoS One, 10(6), 1–22.

    Article  CAS  Google Scholar 

  • Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overvie. NeuroImage, 45, S199–S209.

    Article  PubMed  Google Scholar 

  • Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourão-Miranda, J., Bokde, A. W., Hampel, H., & Ewers, M. (2010). Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. NeuroImage, 50(1), 162–174.

    Article  PubMed  Google Scholar 

  • Poldrack, R. A. (2007). Region of interest analysis for fMRI. Social Cognitive and Affective Neuroscience, 2(1), 67–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poldrack, R. A., & Farah, M. J. (2015). Progress and challenges in probing the human brain. Nature, 526, 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, L., Zhang, L., Chen, A., & Egner, T. (2017). Dynamic trial-by trial recoding of task-set representations in the frontoparietal cortex mediates behavioral flexibility. The Journal of Neuroscience, 37(45), 11037–11050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi, M. N. I., Oh, J., Min, B., Jo, H. J., & Lee, B. (2017). Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI. Frontiers in Human Neuroscience, 11(157).

  • Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y. (2008). SimpleMKL. Journal of Machine Learning, 9, 2491–2521.

    Google Scholar 

  • Sakai, K. (2008). Task set and prefrontal cortex. Annual Review of Neuroscience, 31, 219–245.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., & Eickhoff, S. B. (2018). Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex, 1–20.

  • Schrouff, J., Cremers, J., Garraux, G., Baldassarre, L., Mourão-Miranda, J., Phillips, C., 2013a. Localizing and comparing weight maps generated from linear kernel machine learning models. IEEE Explore, http://ieeexplore.ieee.org/document/6603572/.

  • Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., Phillips, C., Richiardi, J., & Mourão-Miranda, J. (2013b). Localizing and comparing weight maps generated fromlinear kernel machine learning models. Proceedings of the 3rd workshop on Pattern Recognition in NeuroImaging,http://ieeexplore.ieee.org/document/6603572/.

  • Schrouff, J., Monteiro, J. M., Portugal, L., Rosa, M. J., Phillips, C., & Mourão-Miranda, J. (2018). Embedding anatomical or functional knowledge in whole-brain multiple kernel learnig models. Neuroinformatics, 16, 117–143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sona, D., Veeramachaneni, S., Olivetti, E., & Avesani, P. (2007). Inferring cognition from fMRI brain images. Int Conf Artif Neural Netw, 869–878.

  • Stelzer, J., Chen, Y., & Turner, R. (2013). Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): Random permutations and cluster size control. NeuroImage, 65, 69–82.

    Article  PubMed  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58(1), 267–288.

    Google Scholar 

  • Turner, B., Mumford, J., Poldrack, R., & Ashby, F. (2012). Spatiotemporal activity estimation for multivoxel pattern analysis with rapid event-related designs. NeuroImage, 62(3), 1429–1438.

    Article  PubMed  Google Scholar 

  • Urchs, S., Dansereau, C., Benhajali, Y., Bellec, P. (2015) Group multiscale functional template generated with BASC on the Cambridge sample https://figshare.com/articles/Group_multiscale_functional_template_generated_with_BASC_on_the_Cambridge_sample/1285615

  • Wang, D., Buckner, R. L., Fox, M. D., Holt, D. J., Holmes, A. J., Stoecklein, S., Langs, G., Pan, R., Qian, T., Kuncheng, L., Baker, J. T., Stufflebeam, S. M., Wang, K., Wang, X., Hong, B., & Liu, H. (2015). Parcellating cortical functional networks in individuals. Nature Neuroscience, 18, 1853–1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.

    Article  PubMed  Google Scholar 

  • Yu, S., Falck, T., Daemen, A., Tranchevent, L. C., Suykens, J. A., De Moor, B., & Moreau, Y. (2010). L2-norm multiple kernel learning and its application to biomedical data fusion. BMC Bioinformatics, 11, 309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Janaina Mourão-Miranda for her kind help during the development of the algorithms employed in the current research.

Funding

This work was supported by the Spanish Ministry of Science and Innovation through grant PSI2016–78236-P to M.R and the Spanish Ministry of Economy and Competitiveness through grant BES-2014-069609 to J.E.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Ruz.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arco, J.E., Díaz-Gutiérrez, P., Ramírez, J. et al. Atlas-Based Classification Algorithms for Identification of Informative Brain Regions in fMRI Data. Neuroinform 18, 219–236 (2020). https://doi.org/10.1007/s12021-019-09435-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-019-09435-w

Keywords

Navigation