Abstract
Multi-voxel pattern analysis (MVPA) has been successfully applied to neuroimaging data due to its larger sensitivity compared to univariate traditional techniques. Searchlight is the most widely employed approach to assign functional value to different regions of the brain. However, its performance depends on the size of the sphere, which can overestimate the region of activation when a large sphere size is employed. In the current study, we examined the validity of two different alternatives to Searchlight: an atlas-based local averaging method (ABLA, Schrouff et al. Neuroinformatics 16, 117–143, 2013a) and a Multi-Kernel Learning (MKL, Rakotomamonjy et al. Journal of Machine Learning 9, 2491–2521, 2008) approach, in a scenario where the goal is to find the informative brain regions that support certain mental operations. These methods employ weights to measure the informativeness of a brain region and highly reduce the large computational cost that Searchlight entails. We evaluated their performance in two different scenarios where the differential BOLD activation between experimental conditions was large vs. small, and employed nine different atlases to assess the influence of diverse brain parcellations. Results show that both methods were able to localize informative regions when differences between conditions were large, demonstrating a large sensitivity and stability in the identification of regions across atlases. Moreover, the sign of the weights reported by these methods provided the directionality of univariate approaches. However, when differences were small, only ABLA localized informative regions. Thus, our results show that atlas-based methods are useful alternatives to Searchlight, but that the nature of the classification to perform should be taken into account when choosing the specific method to implement.
Similar content being viewed by others
References
Abdulrahman, H., & Henson, R. N. (2016). Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis. NeuroImage, 125, 756–766.
Adeli, E., Guorong, W., Saghafi, B., An, L., Shi, F., & Shen, D. (2017). Kernel-based joint feature selection and max-margin classification for early diagnosis of Parkinson’s disease. Scientific Reports, 7, 41069.
Arco, J.E., Ramírez, J., Puntonet, C.G., Górriz, J.M., Ruz, M., 2015. Short-term prediction of MCI to AD conversion based on longitudinal MRI analysis and neuropsychological tests. Innovation in medicine healthcare, 385-394.
Arco, J.E., González-García, C., Ramírez, J., Ruz, M., 2016. Comparison of different methods for brain decoding from fMRI beta maps. Poster presented at 22nd annual meeting of the Organization for Human Brain Mapping, Geneve, (Switzerland).
Arco, J. E., González-García, C., Díaz-Gutiérrez, P., Ramírez, J., & Ruz, M. (2018). Influence of activation pattern estimates and statistical significance tests in fMRI decoding analysis. Journal of Neuroscience Methods, 308, 248–260.
Balci, S. K., Sabuncu, M. R., Yoo, J., Ghosh, S. S., Whitfield-Gabrieli, S., Gabrieli, J. D., & Golland, P. (2008). Prediction of successful memory encoding from fMRI data. Med Image Comput Assist Inter, 11, 97–104.
Baldassarre, L., Pontil, M., & Mourão-Miranda, J. (2017). Combining accuracy and stability for model selection in brain decoding. Frontiers in Neuroscience, 11, 62.
Bellec, P., Rosa-Neto, P., Lyttelton, O. C., Benali, H., & Evans, A. C. (2010). Multi-level bootstrap analysis of stable clusters in resting-state fMRI. NeuroImage, 51, 1126–1139.
Bennett, K.P., Blue, J.A., 1998. A support vector machine approach to decision trees. 1998 IEEE international joint conference in neural networks proceedings.
Bhandari, A., Gagne, C., & Badre, D. (2018). Just above chance: Is it harder to decode information from prefrontal cortex hemodynamic activity patterns? Journal of Cognitive Neuroscience, 30(10), 1473–1498.
Blankertz, B., Dornhege, G., Kraudelat, M., Müller, K. R., & Curio, G. (2007). The non-invasive Berlin brain-computer Interface: Fast acquisition of effective performance in untrained subjects. NeuroImage, 37(2), 539–550.
Bode, S., & Haynes, J.-D. (2009). Decoding sequential stages of task preparation in the human brain. NeuroImage, 45(2), 606–613.
Boser, B.E., Guyon, I., Vapnik, V., 1992. A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on computational learning theory, 144-152.
Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M., 2010. The balanced accuracy and its posterior distribution. 2010 20th international conference on pattern recognition.
Brodersen, K. H., Schofield, T. M., Leff, A. P., Ong, C. S., Lomakina, E. I., Buhmann, J. M., & Stephan, K. E. (2011). Generative embedding for model-based classification of fMRI data. PLoS Computational Biology, 7(6), e1002079.
Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.
Chanel, G., Pichon, S., Conty, L., Berthoz, S., Chevallier, C., & Grèzes, J. (2016). Classification of autistic individuals and controls using cross-task characterization of fMRI activity. NeuroImage: Clinical, 10, 76–88.
Chang, L. J., & Sanfey, A. G. (2013). Great expectations: Neural computations underlying the use of social norms in decision-making. Social Cognitive and Affective Neuroscience, 8(3), 277–284.
Chen, Y., Namburi, P., Elliott, L., Heinzle, J., Soon, C., Chee, M., & Haynes, J. (2011). Cortical surface-based searchlight decoding. NeuroImage, 56, 582–592.
Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., & Hasson, U. (2017). Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience, 20(1), 115–125.
Choi, H., Ha, S., Im, H. J., Paek, S. H., & Lee, D. S. (2017). Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging. NeuroImage: Clinical, 16, 586–594.
Cichy, R. M., Pantazis, D., & Oliva, A. (2016). Similarity-based fusion of MEG and fMRI reveals spatio-temporal dynamics in human cortex during visual object recognition. Cerebral Cortex, 26(8), 3563–3579.
Coutanche, M. N., Thompson-Schill, S. L., & Schultz, R. T. (2011). Multi-voxel pattern analysis of MRI data predicts clinical symptom severity. NeuroImage, 57(1), 113–123.
Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) “brain reading”: Detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19, 261–270.
Dai, D., Wang, J., Hua, J., & He, H. (2012). Classification of ADHD children through multimodal magnetic resonance imaging. Frontiers in Systems Neuroscience, 6(63).
De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., & Formisano, E. (2008). Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage, 43, 44–58.
Del Gaizo, J., Mofrad, N., Jensen, J. H., Clark, D., Glenn, R., Helpern, J., & Bonilha, L. (2017). Using machine learning to classify temporal lobe epilepsy based on diffusion MRI. Brain and Behavior: A Cognitive Neuroscience Perspective, 7(10), e00801.
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968–980.
Di Russo, F., Berchicci, M., Bozzacchi, C., Perri, R. L., Pitzalis, S., & Spinelli, D. (2017). Beyond the “Bereitschaftspotential”: Action preparation behind cognitive functions. Neuroscience and Biobehavioral Reviews, 78, 57–81.
Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., et al. (2010). Prediction of individual brain maturity using fMRI. Science, 329(5997), 1358–1361.
Dubois, J., de Berker, A. O., & Tsao, D. Y. (2015). Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA. The Journal of Neuroscience, 35(6), 2791–2802.
Etzel, J. A., Zacks, J. M., & Braver, T. S. (2013). Searchlight analysis: Promise, pitfalls, and potential. NeuroImage, 78, 261–269.
Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR: A library for large linear classification. Journal March Learning Res, 9, 1871–1874.
Fan, L., Wang, J., Zhang, Y., Han, W., Yu, C., & Jiang, T. (2014). Connectivity-based parcellation of the human temporal pole using diffusion tensor imaging. Cerebral Cortex, 24, 3365–3378.
Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. R., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016). The human Brainnetome atlas: A new brain atlas based on connectional architecture. Cerebral Cortex, 26, 3508–3526.
Filippone, M., Marquand, A. F., Blain, C. R. V., Williams, S. C. R., Mourão-Miranda, J., & Girolami, M. (2013). Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaging data modalities. The Annals of Applied Statistics, 6(4), 1883–1905.
Forman, S., Cohen, J., Fitzgerald, M., Eddy, W., Mintum, M., & Noll, D. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size threshold. Magnetic Resonance in Medicine, 33, 636–647.
Fort, G., & Lambert-Lacroix, S. (2005). Classification using partial least squares with penalized logistic regression. Bioinformatics, 21, 1104–1111.
Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189–210.
Gabay, A. S., Radua, J., Kempton, M. J., & Mehta, M. A. (2014). The ultimatum game and the brain: A meta-analysis. Neuroscience and Biobehavioral Reviews, 47, 549–558.
Gaertig, C., Moser, A., Alguacil, S., & Ruz, M. (2012). Social information and economic decisión-making in the ultimatum game. Frontiers in Neuroscience, 6(103).
Gaonkar, B., Shinohara, R., Davatzikos, C., & Initiative, A. D. N. (2015). Interpreting support vector machine models for multivariate group analysis in neuroimaging. Medical Image Analysis, 24(1), 190–204.
González-García, C., Mas-Herrero, E., de Diego-Balaguer, R., & Ruz, M. (2016). Task-specific preparatory neural activations in low-inference contexts. Brain Structure & Function, 8, 3997–4006.
González-García, C., Arco, J. E., Palenciano, A. F., Ramírez, J., & Ruz, M. (2017). Encoding, preparation and implementation of novel complex verbal instructions. NeuroImage, 148, 264–273.
Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J., Ortega, M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J. M., Coalson, R. S., Nguyen, A. L., McDermott, K. B., Shimony, J. S., Snyder, A. Z., Schlaggar, B. L., Petersen, S. E., Nelson, S. M., & Dosenbach, N. U. F. (2017). Precision functional mapping of individual human brains. Neuron, 95(4), 791–807.
Grecucci, A., Giorgetta, C., van’t Wout, M., Bonini, N., & Sanfey, A. G. (2013). Reappraising the ultimatum: An fMRI study of emotion regulation and decision making. Cerebral Cortex, 23(2), 399–410.
Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & Bießmann, F. (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87, 96–110.
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425–2430.
Haxby, J. V., Connolly, A. C., & Guntupalli, J. S. (2014). Decoding neural representational spaces using multivariate pattern analysis. Annual Review of Neuroscience, 37, 435–456.
Haynes, J.-D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience, 8(5), 686–691.
Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews. Neuroscience, 7, 523–534.
Hebart, M. N., & Baker, C. I. (2017). Deconstructing multivariate decoding for the study of brain function. NeuroImage, 180, 4–18. https://doi.org/10.1016/j.neuroimage.2017.08.005.
Henson, R., 2005. Design efficiency in fMRI. URL http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency# VII._Should_I_treat_my_trials_as_events_or_epochs_.3F.
Illan, I. A., Górriz, J. M., Ramírez, J., & Meyer-Base, A. (2014). Spatial component analysis of fMRI ata for Alzheimer’s disease diagnosis: A Bayesian network approach. Frontiers in Computational Neuroscience, 26, 156.
Joliot, M., Jobard, G., Naveau, M., Delcroix, N., Petit, L., Zago, L., Crivello, F., Mellet, E., Mazoyer, B., & Tzourio-Mazoyer, N. (2015). AICHA: An atlas of intrinsic connectivity of homotopic areas. Journal of Neuroscience Methods, 254, 46–59.
Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679–685.
Khedher, L., Illán, I.A., Górriz, J.M., Ramírez, J., Meyer-Baese, A., 2017. Independent component analysis-support vector machine-based computer aided diagnosis system for Alzheimer’s disease with visual support. International journal of neural systems 27(3), 8 1650050.
Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. PNAS, 103, 3863–3868.
Kuzmanovic, B., Rigoux, L., & Tittgemeyer, M. (2018). Influence of vmPFC on dmPFC predicts valence-guided belief formation. The Journal of Neuroscience, 38(37), 7996–8010.
Lanckriet, G. R. G., Cristianini, N., Bartlett, P., El Ghaoui, L., & Jordan, M. I. (2004). Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5, 27–72.
Lindquist, K., Satpute, A., Wager, T., Weber, J., & Barrett, L. (2015). The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex, 26(5), 1910–1922.
Liu, H., Stufflebeam, S. M., Sepulcre, J., Hedden, T., & Buckner, R. L. (2009). Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proceedings of the National Academy of Sciences, 106(48), 20499–20503.
Liu, H., Qin, W., Li, W., Fan, L., Wang, J., Jiang, T., & Yu, C. (2013). Connectivity-based parcellation of the human frontal pole with diffusion tensor imaging. The Journal of Neuroscience, 33, 6782–6790.
Loose, L. S., Wisniewski, D., Rusconi, M., Goschke, T., & Haynes, J.-D. (2017). Switch-independent task representations in frontal and parietal lobe. The Journal of Neuroscience, 37(33), 8033–8042.
Misaki, M., Kim, Y., Bandettini, P., & Kriegeskorte, N. (2010). Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. NeuroImage, 53(1), 103–118.
Moser, A., Gaertig, C., & Ruz, M. (2014). Social information and personal interests modulate neural activity during economic decision-making. Frontiers in Human Neuroscience, 8, 31.
Mourão-Miranda, J., Bokde, A. L. W., Born, C., Hampel, H., & Stetter, M. (2005). Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional fMRI data. NeuroImage, 25, 980–995.
Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: Multi- voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10, 424–430.
Nurse, E. S., Karoly, P. J., Grayden, D. B., & Freestone, D. R. (2015). A generalizable brain-computer-Interface (BCI) using machine learning for feature discovery. PLoS One, 10(6), 1–22.
Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: A tutorial overvie. NeuroImage, 45, S199–S209.
Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourão-Miranda, J., Bokde, A. W., Hampel, H., & Ewers, M. (2010). Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. NeuroImage, 50(1), 162–174.
Poldrack, R. A. (2007). Region of interest analysis for fMRI. Social Cognitive and Affective Neuroscience, 2(1), 67–70.
Poldrack, R. A., & Farah, M. J. (2015). Progress and challenges in probing the human brain. Nature, 526, 371–379.
Qiao, L., Zhang, L., Chen, A., & Egner, T. (2017). Dynamic trial-by trial recoding of task-set representations in the frontoparietal cortex mediates behavioral flexibility. The Journal of Neuroscience, 37(45), 11037–11050.
Qureshi, M. N. I., Oh, J., Min, B., Jo, H. J., & Lee, B. (2017). Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI. Frontiers in Human Neuroscience, 11(157).
Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y. (2008). SimpleMKL. Journal of Machine Learning, 9, 2491–2521.
Sakai, K. (2008). Task set and prefrontal cortex. Annual Review of Neuroscience, 31, 219–245.
Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N., Holmes, A. J., & Eickhoff, S. B. (2018). Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex, 1–20.
Schrouff, J., Cremers, J., Garraux, G., Baldassarre, L., Mourão-Miranda, J., Phillips, C., 2013a. Localizing and comparing weight maps generated from linear kernel machine learning models. IEEE Explore, http://ieeexplore.ieee.org/document/6603572/.
Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., Phillips, C., Richiardi, J., & Mourão-Miranda, J. (2013b). Localizing and comparing weight maps generated fromlinear kernel machine learning models. Proceedings of the 3rd workshop on Pattern Recognition in NeuroImaging,http://ieeexplore.ieee.org/document/6603572/.
Schrouff, J., Monteiro, J. M., Portugal, L., Rosa, M. J., Phillips, C., & Mourão-Miranda, J. (2018). Embedding anatomical or functional knowledge in whole-brain multiple kernel learnig models. Neuroinformatics, 16, 117–143.
Sona, D., Veeramachaneni, S., Olivetti, E., & Avesani, P. (2007). Inferring cognition from fMRI brain images. Int Conf Artif Neural Netw, 869–878.
Stelzer, J., Chen, Y., & Turner, R. (2013). Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): Random permutations and cluster size control. NeuroImage, 65, 69–82.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58(1), 267–288.
Turner, B., Mumford, J., Poldrack, R., & Ashby, F. (2012). Spatiotemporal activity estimation for multivoxel pattern analysis with rapid event-related designs. NeuroImage, 62(3), 1429–1438.
Urchs, S., Dansereau, C., Benhajali, Y., Bellec, P. (2015) Group multiscale functional template generated with BASC on the Cambridge sample https://figshare.com/articles/Group_multiscale_functional_template_generated_with_BASC_on_the_Cambridge_sample/1285615
Wang, D., Buckner, R. L., Fox, M. D., Holt, D. J., Holmes, A. J., Stoecklein, S., Langs, G., Pan, R., Qian, T., Kuncheng, L., Baker, J. T., Stufflebeam, S. M., Wang, K., Wang, X., Hong, B., & Liu, H. (2015). Parcellating cortical functional networks in individuals. Nature Neuroscience, 18, 1853–1860.
Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.
Yu, S., Falck, T., Daemen, A., Tranchevent, L. C., Suykens, J. A., De Moor, B., & Moreau, Y. (2010). L2-norm multiple kernel learning and its application to biomedical data fusion. BMC Bioinformatics, 11, 309.
Acknowledgments
We are grateful to Janaina Mourão-Miranda for her kind help during the development of the algorithms employed in the current research.
Funding
This work was supported by the Spanish Ministry of Science and Innovation through grant PSI2016–78236-P to M.R and the Spanish Ministry of Economy and Competitiveness through grant BES-2014-069609 to J.E.A.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Arco, J.E., Díaz-Gutiérrez, P., Ramírez, J. et al. Atlas-Based Classification Algorithms for Identification of Informative Brain Regions in fMRI Data. Neuroinform 18, 219–236 (2020). https://doi.org/10.1007/s12021-019-09435-w
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-019-09435-w