Abstract
Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.
Similar content being viewed by others
Notes
Neuroimaging Informatics Tool and Resources Clearinghouse
References
Aerts, H.J.W.L. et al. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 5, p.4006. Available at: http://www.nature.com/ncomms/2014/140603/ncomms5006/full/ncomms5006.html [Accessed July 15, 2014].
Aribisala, B.S., He, J. & Blamire, A.M. (2011). Comparative study of standard space and real space analysis of quantitative MR brain data. Journal of magnetic resonance imaging: JMRI, 33(6), pp.1503–1509. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21591021 [Accessed August 18, 2014].
Basser, P.J., Mattiello, J. & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), pp.259–267. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1275686&tool=pmcentrez&rendertype=abstract [Accessed September 20, 2013].
Buckner, R.L. et al. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. NeuroImage, 23(2), pp.724–738. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15488422 [Accessed May 21, 2013].
Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and biomedical research, an international journal, 29(3), pp.162–173. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8812068 [Accessed August 12, 2014].
Dale, A.M., Fischl, B. & Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), pp.179–194. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9931268 [Accessed June 7, 2013].
Das, S. et al., (2011). LORIS: a web-based data management system for multi-center studies. Frontiers in neuroinformatics, 5, p.37. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3262165&tool=pmcentrez&rendertype=abstract [Accessed July 9, 2014].
Fennema-Notestine, C. et al. (2006). Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location. Human Brain Mapping, 27(2), pp.99–113. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2408865&tool=pmcentrez&rendertype=abstract [Accessed March 17, 2012].
Fink, J. (2014). Docker: a Software as a Service, Operating System-Level Virtualization Framework. Code4lib Journal, (25), pp.3–5. Available at: http://journal.code4lib.org/articles/9669.
Fischl, B., Sereno, M.I. & Dale, A.M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), pp.195–207. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9931269 [Accessed June 7, 2013].
Fouke, S.J. et al. (2013). The comprehensive neuro-oncology data repository (CONDR): A research infrastructure to develop and validate imaging biomarkers. Neurosurgery. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24089052 [Accessed October 14, 2013].
Friston, K., 2007. Statistical parametric mapping: the analysis of funtional brain images, Amsterdam;;Boston: Elsevier/Academic Press.
Gholipour, A. et al. (2007). Brain functional localization: a survey of image registration techniques. IEEE Transactions on Medical Imaging, 26(4), pp.427–451. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4141192 [Accessed October 17, 2012].
Glauche, V., (2014) MATLAB Batch System. Available at: http://sourceforge.net/p/matlabbatch/wiki/Home/ .
Hajnal, J. V. et al. (1995). A registration and interpolation procedure for subvoxel matching of serially acquired MR images. Journal of Computer Assisted Tomography, 19(2), pp.289–296. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7890857 [Accessed October 2, 2013].
Hlaihel, C. et al. (2010). Predictive value of multimodality MRI using conventional, perfusion, and spectroscopy MR in anaplastic transformation of low-grade oligodendrogliomas. Journal of Neuro-Oncology, 97(1), pp.73–80. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19727562 [Accessed October 10, 2012].
Joshi, A. et al. (2011). Unified framework for development, deployment and robust testing of neuroimaging algorithms. Neuroinformatics, 9(1), pp.69–84. Available at: http://www.springerlink.com/content/m763304211482j8r/ [Accessed August 27, 2012].
Kumar, V. et al. (2012). Radiomics: the process and the challenges. Magnetic Resonance Imaging, 30(9), pp.1234–1248. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3563280&tool=pmcentrez&rendertype=abstract [Accessed October 6, 2014].
LaMontagne, P. et al. (2013). Reliability of Quantitative Biomarkers of Tumor Progression Based on Multispectral MRI in Glioblastoma Patients. In Neuro-Oncology. Oxford University Press, pp. iii191–iii205. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823904/ [Accessed September 17, 2015].
Law, M. et al. (2008). Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology, 247(2), pp.490–498. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3774106&tool=pmcentrez&rendertype=abstract [Accessed October 9, 2013].
Lee, J.J. et al. (2010). Dynamic susceptibility contrast MRI with localized arterial input functions. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine, 63(5), pp.1305–1314. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3014609&tool=pmcentrez&rendertype=abstract [Accessed August 25, 2012].
Maes, F., Vandermeulen, D. & Suetens, P. (2003). Medical image registration using mutual information. Proceedings of the IEEE, 91(10), pp.1699–1722. Available at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1232201 [Accessed October 18, 2012].
Marcus, D.S. et al. (2007). The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics, 5(1), pp.11–34. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17426351 [Accessed August 17, 2012].
Milchenko, M. V. et al. (2014). Comparison of perfusion- and diffusion-weighted imaging parameters in brain tumor studies processed using different software platforms. Academic radiology. Available at: http://www.sciencedirect.com/science/article/pii/S1076633214002219 [Accessed August 1, 2014].
Orsingher, L., Piccinini, S. & Crisi, G. (2014). Differences in dynamic susceptibility contrast MR perfusion maps generated by different methods implemented in commercial software. Journal of Computer Assisted Tomography, 38(5), pp.647–654. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24879459 [Accessed November 3, 2014].
Prior, F.W. et al., (2013). Predicting a multi-parametric probability map of active tumor extent using random forests. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2013, pp.6478–6481. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24111225 [Accessed October 14, 2013].
Rex, D.E., Ma, J.Q. & Toga, A.W. (2003). The LONI pipeline processing environment. NeuroImage, 19(3), pp.1033–1048. Available at: http://dx.doi.org/10.1016/S1053-8119(03)00185-X [Accessed May 29, 2013].
Rorden, C., Karnath, H.-O. & Bonilha, L. (2007). Improving lesion-symptom mapping. Journal of Cognitive Neuroscience, 19(7), pp.1081–1088. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17583985 [Accessed August 5, 2014].
Rowland, D.J. et al. (2005). Registration of [18F]FDG microPET and small-animal MRI. Nuclear Medicine and Biology, 32(6), pp.567–572. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16026703 [Accessed April 18, 2012].
Vrooman, H.A. et al., 2007. Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification. NeuroImage, 37(1), pp.71–81. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17572111 [Accessed June 18, 2013].
Zonari, P., Baraldi, P. & Crisi, G. (2007). Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology, 49(10), pp.795–803. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17619871 [Accessed August 12, 2013].
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Milchenko, M., Snyder, A.Z., LaMontagne, P. et al. Heterogeneous Optimization Framework: Reproducible Preprocessing of Multi-Spectral Clinical MRI for Neuro-Oncology Imaging Research. Neuroinform 14, 305–317 (2016). https://doi.org/10.1007/s12021-016-9296-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-016-9296-7