[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

miR-451 limits CD4+ T cell proliferative responses to infection in mice

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are major regulators of cell responses, particularly in stressed cell states and host immune responses. Some miRNAs have a role in pathogen defense, including regulation of immune responses to Plasmodium parasite infection. Using a nonlethal mouse model of blood stage malaria infection, we have found that miR-451−/− mice infected with Plasmodium yoelii XNL cleared infection at a faster rate than did wild-type (WT) mice. MiR-451−/− mice had an increased leukocyte response to infection, with the protective phenotype primarily driven by CD4+ T cells. WT and miR-451−/− CD4+ T cells had similar activation responses, but miR-451−/− CD4+ cells had significantly increased proliferation, both in vitro and in vivo. Myc is a miR-451 target with a central role in cell cycle progression and cell proliferation. CD4+ T cells from miR-451−/− mice had increased postactivation Myc expression. RNA-Seq analysis of CD4+ cells demonstrated over 5000 differentially expressed genes in miR-451−/− mice postinfection, many of which are directly or indirectly Myc regulated. This study demonstrates that miR-451 regulates T cell proliferative responses in part via a Myc-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10(2):111–22.

    Article  PubMed  Google Scholar 

  2. Rossi RL, Rossetti G, Wenandy L, Curti S, Ripamonti A, Bonnal RJP, et al. Distinct microRNA signatures in human lymphocyte subsets and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat Immunol. 2011;12(8):796–803. http://www.nature.com/ni/journal/v12/n8/abs/ni.2057.html - supplementary-information

    Article  CAS  PubMed  Google Scholar 

  3. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451(7182):1125–9. http://www.nature.com/nature/journal/v451/n7182/suppinfo/nature06607_S1.html

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Sanda T, Look AT, Novina CD, von Boehmer H. Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. J Exp Med. 2011;208(4):663–75. doi:10.1084/jem.20102384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patrick DM, Zhang CC, Tao Y, Yao H, Qi X, Schwartz RJ, et al. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ζ. Genes Dev. 2010;24(15):1614–9. doi:10.1101/gad.1942810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu D, dos Santos CO, Zhao G, Jiang J, Amigo JD, Khandros E, et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ. Genes Dev. 2010;24(15):1620–33. doi:10.1101/gad.1942110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. LaMonte G, Philip N, Reardon J, Lacsina Joshua R, Majoros W, Chapman L, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012;12(2):187–99. doi:10.1016/j.chom.2012.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li H-P, Zeng X-C, Zhang B, Long J-T, Zhou B, Tan G-S, et al. miR-451 inhibits cell proliferation in human hepatocellular carcinoma through direct suppression of IKK-β. Carcinogenesis. 2013;34(11):2443–51. doi:10.1093/carcin/bgt206.

    Article  CAS  PubMed  Google Scholar 

  9. Murata K, Yoshitomi H, Furu M, Ishikawa M, Shibuya H, Ito H, et al. MicroRNA-451 down-regulates neutrophil chemotaxis via p38 MAPK. Arthritis & Rheumatology. 2014;66(3):549–59. doi:10.1002/art.38269.

    Article  CAS  Google Scholar 

  10. Li X, Sanda T, Look AT, Novina CD, von Boehmer H. Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. J Exp Med. 2011;208(4):663–75. doi:10.1084/jem.20102384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smigielska-Czepiel K, van den Berg A, Jellema P, van der Lei RJ, Bijzet J, Kluiver J, et al. Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun. 2014;15(2):115–25. doi:10.1038/gene.2013.69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Organization WH. World Malaria Report 2009. December 2014. http://www.who.int/features/factfiles/malaria/en/ .

  13. Butler NS, Moebius J, Pewe LL, Traore B, Doumbo OK, Tygrett LT, et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol. 2012;13(2):188–95. http://www.nature.com/ni/journal/v13/n2/abs/ni.2180.html - supplementary-information

    Article  CAS  Google Scholar 

  14. Vinetz JM, Kumar S, Good MF, Fowlkes BJ, Berzofsky JA, Miller LH. Adoptive transfer of CD8+ T cells from immune animals does not transfer immunity to blood stage Plasmodium yoelii malaria. J Immunol. 1990;144(3):1069–74.

    CAS  PubMed  Google Scholar 

  15. Scanga CA, Mohan VP, Yu K, Joseph H, Tanaka K, Chan J, et al. Depletion of Cd4+ T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon γ and nitric oxide synthase 2. J Exp Med. 2000;192(3):347–58. doi:10.1084/jem.192.3.347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. George TC, Ortaldo JR, Lemieux S, Kumar V, Bennett M. Tolerance and alloreactivity of the Ly49D subset of murine NK cells. J Immunol. 1999;163(4):1859–67.

    CAS  PubMed  Google Scholar 

  17. Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA, et al. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res. 2006;12(14):4294–305. doi:10.1158/1078-0432.ccr-06-0053.

    Article  CAS  PubMed  Google Scholar 

  18. Kruisbeek AM, Shevach E, Thornton AM. Proliferative assays for T cell function. New Jersey: Current Protocols in Immunology. John Wiley & Sons, Inc.; 2001.

    Google Scholar 

  19. Shi G, Field DJ, Ko KA, Ture S, Srivastava K, Levy S, et al. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J Clin Invest. 2014;124(2):543–52. doi:10.1172/JCI71858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Google Charts API Homepage. In: https://developers.google.com/chart/. 2015. Accessed November 18, 2014.

  21. Li C, Seixas E, Langhorne J. Rodent malarias: the mouse as a model for understanding immune responses and pathology induced by the erythrocytic stages of the parasite. Med Microbiol Immunol. 2001;189(3):115–26. doi:10.1007/s430-001-8017-8.

    Article  CAS  PubMed  Google Scholar 

  22. Wang H, Hammoudeh DI, Follis AV, Reese BE, Lazo JS, Metallo SJ, et al. Improved low molecular weight Myc-max inhibitors. Mol Cancer Ther. 2007;6(9):2399–408. doi:10.1158/1535-7163.mct-07-0005.

    Article  CAS  PubMed  Google Scholar 

  23. Ji H, Wu G, Zhan X, Nolan A, Koh C, De Marzo A, et al. Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation. PLoS One. 2011;6(10):e26057. doi:10.1371/journal.pone.0026057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marinkovic D, Marinkovic T, Kokai E, Barth T, Möller P, Wirth T. Identification of novel Myc target genes with a potential role in lymphomagenesis. Nucleic Acids Res. 2004;32(18):5368–78. doi:10.1093/nar/gkh877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Menssen A, Hermeking H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci. 2002;99(9):6274–9. doi:10.1073/pnas.082005599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeller K, Jegga A, Aronow B, O'Donnell K, Dang C. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. 2003;4(10):R69.

    Article  PubMed  PubMed Central  Google Scholar 

  27. LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012;12(2):187–99. doi:10.1016/j.chom.2012.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Whitmire JK, Tan JT, Whitton JL. Interferon-gamma acts directly on CD8+ T cells to increase their abundance during virus infection. J Exp Med. 2005;201(7):1053–9. doi:10.1084/jem.20041463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pombo DJ, Lawrence G, Hirunpetcharat C, Rzepczyk C, Bryden M, Cloonan N, et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet. 2002;360(9333):610–7. doi:10.1016/S0140-6736(02)09784-2.

    Article  PubMed  Google Scholar 

  30. Muxel SM, Freitas do Rosário AP, Zago CA, Castillo-Méndez SI, Sardinha LR, Rodriguez-Málaga SM, et al. The spleen CD4 T cell response to blood-stage Plasmodium chabaudi malaria develops in two phases characterized by different properties. PLoS One. 2011;6(7):e22434. doi:10.1371/journal.pone.0022434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is funded by NIH grants to LMC (F31AI108187) and CNM (R01HL124018) and an American Heart Association (13EIA14250023) to CNM. The project was also supported by the following University of Rochester CTSA awards: TL1 RR024135, TL1 TR000096, UL1 RR024160, and UL1 TR000042 from the National Center for Research Resources and the National Center for Advancing Translational Sciences of the National Institutes of Health.

The authors would like to thank Dr. Eric Olson for the miR-451‑/‑ mice. The authors have no financial conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig N. Morrell.

Electronic supplementary material

ESM 1

(PDF 638 kb).

ESM 2

(XLSX 4291 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapman, L.M., Ture, S.K., Field, D.J. et al. miR-451 limits CD4+ T cell proliferative responses to infection in mice. Immunol Res 65, 828–840 (2017). https://doi.org/10.1007/s12026-017-8919-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-017-8919-x

Keywords