[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Effects of Selenium-Chitosan on Blood Selenium Concentration, Antioxidation Status, and Cellular and Humoral Immunity in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

One hundred and eighty Kunming mice were allotted to three groups in a randomized complete block design, including two treatments and one control. Mice in group 1 were fed a basal diet as control, while mice in groups 2 and 3 were fed the basal diet supplemented with 0.2 mg/kg selenium as sodium selenite (SS) or selenium-chitosan (SC), respectively. On day 28 of the experiment, blood selenium concentration, glutathione peroxidase (GPx) activity, plasma superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and Con A-induced splenocyte proliferation were determined, and plasma interleukin-2 (IL-2) and interferon-γ (IFN-γ) concentrations, splenic plaque-forming cell (PFC) responses, serum hemolysis level (HC50), and delayed-type hypersensitivity (DTH) responses were determined on day 15 of the experiment. The results showed that blood selenium concentration, GPx activity, splenic PFC response, and plasma IL-2 and IFN-γ concentrations in SC group were higher than those in the control and SS groups (P < 0.01 or P < 0.05), respectively. Plasma SOD activity, Serum hemolysis level, DTH responses, and Con A-induced splenocyte proliferation in SC group were higher than those in control (P < 0.01 or P < 0.05). Plasma SOD activity, serum hemolysis level, DTH responses, and Con A-induced splenocyte proliferation in SC group were also higher than those in SS group, while there was no significant difference between SC and SS groups (P > 0.05). Plasma MDA content in SC group was lower than those in the control and SS groups (P < 0.01 or P < 0.05). It is concluded that SC supplement can increase blood selenium concentration, antioxidation status, and cellular and humoral immunity, and SC has better biological activity than SS in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54

    Article  CAS  PubMed  Google Scholar 

  2. Pieczyńska J, Grajeta H (2014) The role of selenium in human conception and pregnancy. J Trace Elem Med Biol. doi:10.1016/j.jtemb.2014.07.003

    PubMed  Google Scholar 

  3. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830(5):3289–3303

    Article  PubMed  Google Scholar 

  4. Yao HD, Wu Q, Zhang ZW, Li S, Wang XL, Lei XG, Xu SW (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta 1830(4):3112–3120

    Article  CAS  PubMed  Google Scholar 

  5. Nelson SM, Lei X, Prabhu KS (2011) Selenium levels affect the IL-4–induced expression of alternative activation markers in murine macrophages. J Nutr 141(9):1754–1761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39(3):112–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kuruppu D, Hendrie HC, Yang L, Gao S (2014) Selenium levels and hypertension: a systematic review of the literature. Public Health Nutr 17(6):1342–1352

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hou J, Wang T, Liu M, Li S, Chen J, Liu C, Zhang H, Wang Y, Liu Z, Liang N, Wan Y, Li Q, Sun S, Zhang L, Feng H, Liu Y, Wang H (2011) Suboptimal selenium supply–a continuing problem in Keshan disease areas in Heilongjiang province. Biol Trace Elem Res 143(3):1255–1263

    Article  CAS  PubMed  Google Scholar 

  9. Zhao ZJ, Li Q, Yang PZ, Wang H, Kong LC, Wang LH, Sun LY (2013) Selenium: a protective factor for Kaschin-Beck disease in Qing-Tibet Plateau. Biol Trace Elem Res 153(1–3):1–4

    Article  PubMed  Google Scholar 

  10. Norton RL, Hoffmann PR (2012) Selenium and asthma. Mol Asp Med 33(1):98–106

    Article  CAS  Google Scholar 

  11. Mehdi Y, Hornick JL, Istasse L, Dufrasne I (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules 18(3):3292–3311

    Article  CAS  PubMed  Google Scholar 

  12. Khalil AM (1994) Genotoxicity of two pharmacologically important selenium compounds (selenocystine and selenopuridine) in cultured human blood lymphocytes. Toxicol Environ Chem 41:147–154

    Article  CAS  Google Scholar 

  13. Kieliszek M, Blazejak S (2013) Selenium: significance, and outlook for supplementation. Nutrition 29(5):713–718

    Article  CAS  PubMed  Google Scholar 

  14. Jeon SJ, Oh M, Yeo WS, Galvão KN, Jeong KC (2014) Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS One 9(3):e92723

    Article  PubMed Central  PubMed  Google Scholar 

  15. Khambualai O, Yamauchi K, Tangtaweewipat S, Cheva-Isarakul B (2009) Growth performance and intestinal histology in broiler chickens fed with dietary chitosan. Br Poult Sci 50(5):592–597

    Article  CAS  PubMed  Google Scholar 

  16. Qiao Y, Bai XF, Du YG (2011) Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int Immunopharmacol 11:121–127

    Article  CAS  PubMed  Google Scholar 

  17. Karagozlu MZ, Kim SK (2014) Anticancer effects of chitin and chitosan derivatives. Adv Food Nutr Res 72:215–225

    Article  PubMed  Google Scholar 

  18. Liu X, Zhi X, Liu Y, Wu B, Sun Z, Shen J (2012) Effect of chitosan, O-carboxymethyl chitosan, and N-[(2-hydroxy-3-N, N-dimethylhexadecyl ammonium)propyl] chitosan chloride on overweight and insulin resistance in a murine diet-induced obesity. J Agric Food Chem 60(13):3471–3476

    Article  CAS  PubMed  Google Scholar 

  19. Zhang J, Zhang W, Mamadouba B, Xia W (2012) A comparative study on hypolipidemic activities of high and low molecular weight chitosan in rats. Int J Biol Macromol 51(4):504–508

    Article  PubMed  Google Scholar 

  20. Liu A, Song W, Cao D, Liu X, Jia Y (2008) Growth inhibition and apoptosis of human leukemia K562 cells induced by seleno-short-chain chitosan. Methods Find Exp Clin Pharmacol 30(3):181–186

    Article  CAS  PubMed  Google Scholar 

  21. Pan C, Huang K, Zhao Y, Qin S, Chen F, Hu Q (2007) Effect of selenium source and level in hen's diet on tissue selenium deposition and egg selenium concentrations. J Agric Food Chem 55(3):1027–1032

    Article  CAS  PubMed  Google Scholar 

  22. NRC (1995) Nutrient requirements of laboratory animals, 4th edn. Washington, DC

  23. Fromtling RA, Fromtling AM, Staib F, Müller S (1981) Effect of uremia on lymphocyte transformation and chemiluminescence by spleen cells of normal and cryptococcus neoformans-infected mice. Infect Immun 32(3):1073–1078

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Jerne NK, Nordin AA (1963) Plaque formation in agar by single antibody-producing cells. Science 140(3565):405

    Article  Google Scholar 

  25. Liang CL, Zhang XP, Song Y, Jia XD (2013) Immunotoxicological evaluation of wheat genetically modified with TaDREB4 gene on balb/c mice. Biomed Environ Sci 26(8):663–670

    CAS  PubMed  Google Scholar 

  26. Xu XY, Li Y, Xu J (1979) A modified humoral immune assay method: a method of hemolysin determination. Acta Pharma Sin (China) 14(7):443–446

    CAS  Google Scholar 

  27. Gunter SA, Beck PA, Phillips JM (2003) Effects of supplementary selenium source on the performance and blood measurements in beef cows and their calves. J Anim Sci 81(4):856–864

    CAS  PubMed  Google Scholar 

  28. Kim YY, Mahan DC (2001) Comparative effects of high dietary levels of organic and inorganic selenium on selenium toxicity of growing-finishing pigs. J Anim Sci 79(4):942–948

    CAS  PubMed  Google Scholar 

  29. Shiobara Y, Yoshida T, Suzuki KT (1998) Effects of dietary selenium species on Se concentrations in hair, blood, and urine. Toxicol Appl Pharmacol 152(2):309–314

    Article  CAS  PubMed  Google Scholar 

  30. Qin S, Gao J, Huang K (2007) Effects of different selenium sources on the tissue selenium concentrations, blood GSH-Px activities and plasma interleukins cytokine levels in finishing lambs. Biol Trace Elem Res 116(1):91–102

    Article  CAS  PubMed  Google Scholar 

  31. Mahan DC, Kim YY (1996) Effect of inorganic or organic selenium at two dietary levels on reproductive performance and tissue selenium concentrations in first-parity gilts and their progeny. J Anim Sci 74(11):2711–2718

    CAS  PubMed  Google Scholar 

  32. Juniper DT, Bertin G (2013) Effects of dietary selenium supplementation on tissue selenium distribution and glutathione peroxidase activity in Chinese Ring necked Pheasants. Animal 7(4):562–570

    Article  CAS  PubMed  Google Scholar 

  33. Mahan DC, Parrett NA (1996) Evaluating the efficacy of selenium-enriched yeast and sodium selenite on tissue selenium retention and serum glutathione peroxidase activity in grower and finisher swine. J Anim Sci 74(12):2967–2974

    CAS  PubMed  Google Scholar 

  34. Koenig KM, Rode LM, Cohen RD, Buckley WT (1997) Effects of diet and chemical form of selenium on selenium metabolism in sheep. J Anim Sci 75(3):817–827

    CAS  PubMed  Google Scholar 

  35. Ehlig CF, Hogue DE, Allaway WH, Hamm DJ (1967) Fate of selenium from selenite or selenomethionine with or without vitamin E in lambs. J Nutr 92(1):121–126

    CAS  PubMed  Google Scholar 

  36. Wichtel JJ (1998) A review of selenium deficiency in grazing ruminants. N Z Vet J 46(2):47–58

    Article  CAS  PubMed  Google Scholar 

  37. Armstrong D, Browne R (1994) The analysis of free radicals, lipid peroxides, antioxidant enzymes and compounds related to oxidative stress as applied to the clinical chemistry laboratory. Adv Exp Med Biol 366:43–58

    Article  CAS  PubMed  Google Scholar 

  38. Zhang ZW, Wang QH, Zhang JL, Li S, Wang XL, Xu SW (2012) Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol Trace Elem Res 149(3):352–361

    Article  CAS  PubMed  Google Scholar 

  39. Wu X, Wei C, Pan C, Duan Y, Huang K (2010) Regulation of expression and activity of selenoenzymes by different forms and concentrations of selenium in primary cultured chicken hepatocytes. Br J Nutr 104(11):1605–1612

    Article  CAS  PubMed  Google Scholar 

  40. Gan F, Chen X, Liao SF, Lv C, Ren F, Ye G, Pan C, Huang D, Shi J, Shi X, Zhou H, Huang K (2014) Selenium-enriched probiotics improve antioxidant status, immune function, and selenoprotein gene expression of piglets raised under high ambient temperature. J Agric Food Chem 62(20):4502–4508

    Article  CAS  PubMed  Google Scholar 

  41. Goldsby RA, Kindt TJ, Osborne BA, Kuby J (2000) Kuby immunology, 4th edn. Freeman, New York, pp 303–327

    Google Scholar 

  42. Chen X, Hua J, Wang X, Yang K (2013) Effects of selenium-chitosan on blood indexes of breeder rooster. J Beijing Univ Agric (China) 28(2):31–34

    Google Scholar 

  43. Xu D, Li W, Huang Y, He J, Tian Y (2014) The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz. (PAMK) on immune response in chicken spleen under heat stress. Biol Trace Elem Res 160(2):232–237

    Article  CAS  PubMed  Google Scholar 

  44. Zhu M (1992) Influence of dietary selenium level on immune function of rats with esophageal tumors induced by methylbenzylnitrosamine (NMBzA). Zhonghua Zhong Liu Za Zhi 14(1):42–44

    PubMed  Google Scholar 

  45. Qin S, Huang B, Qin J, Wang H, Wang X, Zhang J, Cui J (2014) Effects of selenium-enriched yeast on plasma IL-2 contents, hemolytic ability of plaque forming cells and intestinal flora in mice. China Feed (China) 25(16):22–24

    Google Scholar 

  46. Chang WP, Hom JS, Dietert RR, Combs GF Jr, Marsh JA (1994) Effect of dietary vitamin E and selenium deficiency on chicken splenocyte proliferation and cell surface marker expression. Immunopharmacol Immunotoxicol 16(2):203–223

    Article  CAS  PubMed  Google Scholar 

  47. Vega L, Rodríguez-Sosa M, García-Montalvo EA, Del Razo LM, Elizondo G (2007) Non-optimal levels of dietary selenomethionine alter splenocyte response and modify oxidative stress markers in female mice. Food Chem Toxicol 45(7):1147–1153

    Article  CAS  PubMed  Google Scholar 

  48. Wen ZS, Xu YL, Zou XT, Xu ZR (2011) Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar Drugs 9(6):1038–1055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Jan SS, Liu DC, Dong XY, Hu YM, Chen JD (2012) Effects of chitosan and its derivative added to water on immunological enhancement and disease control. Immunotherapy 4(7):697–701

    Article  CAS  PubMed  Google Scholar 

  50. Lee DY, Choi IS, Han JH, Yoo HS (2002) Chitosan and D-glucosamine induce expression of Th1 cytokine genes in porcine spleen cells. J Vet Med Sci 64(7):645–648

    Article  CAS  PubMed  Google Scholar 

  51. Peng L, Zhao P, Li B, Zhang JH, Wang YW, Fu WZ (2014) Experimental study on the effect of chitosan on immune regulation in mice. Pract Prev Med (China) 21(9):1126–1128

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (grant numbers 31101867 and 31001093), Development of Science and Technology Foundation of Higher Educational Institutions of Tianjin (grant number 20110620), and Program of Veterinary Biotechnology Outstanding Scientific Research Innovation Team of Tianjin (grant number TD12-5019).

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, S., Huang, B., Ma, J. et al. Effects of Selenium-Chitosan on Blood Selenium Concentration, Antioxidation Status, and Cellular and Humoral Immunity in Mice. Biol Trace Elem Res 165, 145–152 (2015). https://doi.org/10.1007/s12011-015-0243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0243-5

Keywords