Abstract
A naturally immobilized biocatalyst with lipase activity was produced by Thermomyces lanuginosus on solid-state fermentation with perlite as inert support. Maxima lipase activities (22 and 120 U/g of dry matter, using p-nitrophenyl octanoate and trioctanoine, respectively, as substrates) were obtained after 72 h of solid culture, remaining nearly constant up to 120 h. Maxima lipase activity was found at 60 to 85 °C and pH 10. The biocatalyst was stable at 60 °C for at least 4 h of incubation and a pH from 7 to 10. Energy values of activation and deactivation of lipase were of 26 and 6.7 kJ/mol, respectively. The biocatalyst shows high selectivity for the release of the omega-3 polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), during the hydrolysis of sardine oil. The EPA/DHA ratio (16:6) released by this biocatalyst was superior to that obtained with the commercial preparations of T. lanuginosus.
Similar content being viewed by others
References
Fernández-Lorente, G., Betancor, L., Carrascosa, A. V., & Guisán, J. M. (2011). Journal of the American Oil Chemists Society, 88, 1173–1178.
Kris-Etherton, P. M., Grieger, J. A., & Etherton, T. D. (2009). Prostaglandins, Leukotrienes and Essential Fatty Acids, 81, 99–104.
Hao, L. P., Cao, X. J., & Hur, B. K. (2008). Journal of Industrial and Engineering Chemistry, 14, 639–643.
Fernández-Lorente, G., Betancor, L., Carrascosa, A. V., Palomo, J. M., & Guisan, J. M. (2012). Journal of the American Oil Chemists Society, 89, 97–102.
Lanser, A. C., Manthey, L. K., & Hou, C. T. (2002). Current Microbiology, 44, 336–340.
Lyberg, A.-M., & Adlercreutz, P. (2008). Biochimica et Biophysica Acta - Proteins and Proteomics, 1784, 343–350.
Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R., & Fernández-Lafuente, R. (2013). Chemical Society Reviews, 42, 6290–6307.
Garcia-Galan, C., Berenguer-Murcia, A., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Advanced Synthesis and Catalysis, 353, 2885–2904.
Stepankova, V., Bidmanova, S., Koudelakova, T., Prokop, Z., Chaloupkova, R., & Damborsky, J. (2013). ACS Catalysis, 3, 2823–2836.
Palomo, J. M. (2009). Current Organic Synthesis, 6, 1–14.
Akanbi, T. O., Adcock, J. L., & Barrow, C. J. (2013). Food Chemistry, 138, 615–620.
Fernandez-Lafuente, R. (2010). Journal of Molecular Catalysis B: Enzymatic, 62, 197–212.
Gaffney, M., Doyle, S., & Murphy, R. (2009). Bioscience, Biotechnology, and Biochemistry, 73, 2640–2644.
Bokhari, S. A. I., Latif, F., & Rajoka, M. I. (2008). Brazilian Journal of Microbiology, 39, 724–733.
Morinaga, T., Kanda, S., & Nomi, R. (1986). Journal of Fermentation Technology, 64, 451–453.
Omar, I. C., Nishio, N., & Nagai, S. (1987). Agricultural and Biological Chemistry, 51, 2145–2151.
Liu, W.-H., Beppu, T., & Arima, K. (1973). Agricultural and Biological Chemistry, 37, 157–163.
Viniegra-González, G., Favela-Torres, E., Aguilar, C., Rómero-Gomez, S. D. J., Díaz-Godínez, G., & Augur, C. (2003). Biochemical Engineering Journal, 13, 157–167.
Mateos Diaz, J. C., Rodríguez, J. A., Roussos, S., Cordova, J., Abousalham, A., Carriere, F., & Baratti, J. (2006). Enzyme and Microbial Technology, 39, 1042–1050.
Perez-Guerra, N., Torrado-Agrassar, A., Lopez-Macias, C., & Pastrana, L. (2003). Journal of Agricultural and Food Chemistry, 2, 343–350.
Martínez-Ruiz, A., García, H. S., Saucedo-Castañeda, G., & Favela-Torres, E. (2008). Applied Biochemistry and Biotechnology, 151, 393–401.
Pandey, A. (1991). Process Biochemistry, 26, 355–361.
Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Biochemical Engineering Journal, 44, 13–18.
Hernández-Rodríguez, B., Córdova, J., Bárzana, E., & Favela-Torres, E. (2009). Journal of Molecular Catalysis B: Enzymatic, 61, 136–142.
Saucedo-Castañeda, G., Trejo-Hernández, M. R., Lonsane, B. K., Navarro, J. M., Roussos, S., Dufour, D., & Raimbault, M. (1994). Process Biochemistry, 29, 13–24.
Gomes, J., Purkarthofer, H., Hayn, M., Kapplmuller, J., Sinner, M., & Steiner, W. (1993). Applied Microbiology and Biotechnology, 39, 700–707.
Prathumpai, W., Flitter, S. J., McIntyre, M., & Nielsen, J. (2004). Applied Microbiology and Biotechnology, 65, 714–719.
Jensen, B., Marylin, W., Geoffrey, R., Anthony, T., & Jorgen, O. (1993). Mycological Research, 97, 665–669.
Solis-Pereira, S., Favela-Torres, E., Viniegra-Gonzalez, G., & Gutierrez-Rojas, M. (1993). Applied Microbiology and Biotechnology, 39, 36–41.
Aguilar, C. N., Augur, C., Favela-Torres, E., & Viniegra-González, G. (2001). Process Biochemistry, 36, 565–570.
Luedecking, R., & Piret, E. (1959). Journal of Biochemical and Microbiological Technology and Engineering, 1, 393–412.
Gumel, A. M., Annuar, M. S. M., Heidelberg, T., & Chisti, Y. (2011). Process Biochemistry, 46, 2079–2090.
Gutarra, M. L. E., Godoy, M. G., Maugeri, F., Rodrigues, M. I., Freire, D. M. G., & Castilho, L. R. (2009). Bioresource Technology, 100, 5249–5254.
Pereira, E. B., De Castro, H. F., De Moraes, F. F., & Zanin, G. M. (2001). Applied Biochemistry and Biotechnology, 91–93, 739–752.
Santos, A. M. P., & Maugeri, F. (2007). Food Technology & Biotechnology , 45, 181–186.
Bokhari, S. A. I., Rajoka, M. I., Javaid, A., Shafiq ur, R., Ishtiaq ur, R., & Latif, F. (2010). Bioresource Technology, 101, 2800–2808.
Khor, G. K., Sim, J. H., Kamaruddin, A. H., & Uzir, M. H. (2010). Bioresource Technology, 101, 6558–6561.
Wolski, E., Menusi, E., Remonatto, D., Vardanega, R., Arbter, F., Rigo, E., Ninow, J., Mazutti, M. A., Di Luccio, M., de Oliveira, D., & Treichel, H. (2009). LWT - Food Science and Technology, 42, 1557–1560.
Namboodiri, V. M. H., & Chattopadhyaya, R. (2000). Lipids, 35, 495–502.
Nunes, P. A., Pires-Cabral, P., & Ferreira-Dias, S. (2011). Food Chemistry, 127, 993–998.
Zhu, K., Jutila, A., Tuominen, E. K. J., Patkar, S. A., Svendsen, A., & Kinnunen, P. K. J. (2001). Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1547, 329–338.
Gulati, H. K., Chadha, B. S., & Saini, H. S. (2007). Acta Microbiologica et Immunologica Hungarica, 54, 121–138.
Rodrigues, R. C., Godoy, C. A., Volpato, G., Ayub, M. A. Z., Fernandez-Lafuente, R., & Guisan, J. M. (2009). Process Biochemistry, 44, 963–968.
Wen Hsiung, L., Beppu, T., & Arima, K. (1972). Agricultural and Biological Chemistry, 36, 1919–1924.
Rubio-Rodríguez, N., Beltrán, S., Jaime, I., de Diego, S. M., Sanz, M. T., & Carballido, J. R. (2010). Innovative Food Science & Emerging Technologies, 11, 1–12.
Martín Valverde, L., González Moreno, P. A., Rodríguez Quevedo, A., Hita Peña, E., Jiménez Callejón, M. J., Esteban Cerdán, L., Molina Grima, E., & Robles Medina, A. (2012). Journal of the American Oil Chemists Society, 89, 1633–1645.
Kralovec, J. A., Wang, W., & Barrow, C. J. (2010). Australian Journal of Chemistry, 63, 922–928.
Bhale, S. D., Xu, Z., Prinyawiwatkul, W., King, J. M., & Godber, J. S. (2007). Journal of Food Science, 72, C504–C508.
Acknowledgments
The authors acknowledge financial support (Project 154004) from The National Council for Science and Technology (CONACyT), and Nayeli Ávila acknowledges the scholarship number 203453. The authors gratefully acknowledge Dr. Gloria Fernández-Lorente for her support and technical assistance during the application of biocatalysts in the hydrolysis of sardine oil at the Research Institute of Food Science (CIAL), UAM, Madrid (Spain).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ávila-Cisneros, N., Velasco-Lozano, S., Huerta-Ochoa, S. et al. Production of Thermostable Lipase by Thermomyces lanuginosus on Solid-State Fermentation: Selective Hydrolysis of Sardine Oil. Appl Biochem Biotechnol 174, 1859–1872 (2014). https://doi.org/10.1007/s12010-014-1159-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-014-1159-9