[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The P2X7 Receptor in the Maintenance of Cancer Stem Cells, Chemoresistance and Metastasis

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Metastasis is the worst prognosis predictor in the clinical course of cancer development. Features of metastatic cancer cells include migratory ability, low degree of differentiation, self-renewal and proliferation potentials, as well as resistance to therapies. Metastatic cells do not present all of the necessary characteristics at once. Indeed, they have a unique phenotypic plasticity, allowing the acquisition of features that make them successful in all steps of metastasis. Cancer stem cells (CSC), the most undifferentiated cells in the tumor mass, display highest metastatic potential and resistance to radio- and chemotherapy. Growing tumors exhibit marked upregulation of P2X7 receptor expression and secrete ATP. Since the P2X7 receptor plays an important role in the maintenance of undifferentiated state of pluripotent cells, its importance on cell fate regulation in the tumor mass is suggested. Considering the extensive crosstalk between CSCs, epithelial-mesenchymal transition, drug resistance and metastasis, current knowledge implicating P2X7 receptor function in these phenomena and new avenues for therapeutic strategies to control metastasis are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1007/s00262-010-0968-0.

    Article  CAS  PubMed  Google Scholar 

  2. Steeg, P. S. (2016). Targeting metastasis. Nature Reviews Cancer, 16, 201–218. https://doi.org/10.1038/nrc.2016.25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tevaarwerk, A. J., Gray, R. J., Schneider, B. P., Smith, M. L., Wagner, L. I., Fetting, J. H., et al. (2013). Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy: Little evidence of improvement over the past 30 years. Cancer, 119(66), 1140–1148. https://doi.org/10.1002/cncr.27819.

    Article  PubMed  Google Scholar 

  4. Bernards, N., Creemers, G. J., Nieuwenhuijzen, G. A. P., Bosscha, K., Pruijt, J. F. M., & Lemmens, V. E. P. P. (2013). No improvement in median survival for patients with metastatic gastric cancer despite increased use of chemotherapy. Annals of Oncology, 24(12), 3056–3060. https://doi.org/10.1093/annonc/mdt401.

    Article  CAS  PubMed  Google Scholar 

  5. James, N. D., Spears, M. R., Clarke, N. W., Dearnaley, D. P., De Bono, J. S., Gale, J., et al. (2015). Survival with newly diagnosed metastatic prostate cancer in the docetaxel era: Data from 917 patients in the control arm of the STAMPEDE trial (MRC PR08, CRUK/06/019). European Urology, 67(6), 1028–1038. https://doi.org/10.1016/j.eururo.2014.09.032.

    Article  PubMed  Google Scholar 

  6. Worni, M., Guller, U., White, R. R., Castleberry, A. W., Pietrobon, R., Cerny, T., et al. (2013). Modest improvement in overall survival for patients with metastatic pancreatic cancer: A trend analysis using the surveillance, epidemiology, and end results registry from 1988 to 2008. Pancreas, 42(7), 1157–1163. https://doi.org/10.1097/MPA.0b013e318291fbc5.

    Article  PubMed  Google Scholar 

  7. Sellers, Z. P., Schneider, G., Bujko, K., Suszynska, M., & Pedziwiatr, D. (2017). Do Cancer cell lines have fixed or fluctuating stem cell phenotypes? – Studies with the NTera2 cell line. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-017-9743-3.

  8. Kuo, C. Y., & Ann, D. K. (2018). When fats commit crimes: Fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Communications, 38(1), 1–12. https://doi.org/10.1186/s40880-018-0317-9.

    Article  Google Scholar 

  9. Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews. https://doi.org/10.1038/nrclinonc.2017.44.

  10. Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology. https://doi.org/10.1038/nrm3758.

  11. Craig, B. T., Rellinger, E. J., Alvarez, A. L., Dusek, H. L., Qiao, J., & Chung, D. H. (2016). Induced differentiation inhibits sphere formation in neuroblastoma. Biochemical and Biophysical Research Communications, 477(2), 255–259. https://doi.org/10.1016/j.bbrc.2016.06.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Louis, C. U., & Shohet, J. M. (2015). Neuroblastoma: Molecular pathogenesis and therapy. Annual Review of Medicine, 66(1), 49–63. https://doi.org/10.1146/annurev-med-011514-023121.

    Article  CAS  PubMed  Google Scholar 

  13. Glaser, T., Cappellari, A. R., Pillat, M. M., Iser, I. C., Wink, M. R., Battastini, A. M. O., & Ulrich, H. (2012). Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signalling, 8(3), 523–537. https://doi.org/10.1007/s11302-011-9282-3.

    Article  CAS  PubMed  Google Scholar 

  14. Martínez-Ramírez, A. S., Díaz-Muñoz, M., Butanda-Ochoa, A., & Vázquez-Cuevas, F. G. (2017). Nucleotides and nucleoside signaling in the regulation of the epithelium to mesenchymal transition (EMT). Purinergic Signalling, 13(1). https://doi.org/10.1007/s11302-016-9550-3.

  15. Saul, A., Hausmann, R., Kless, A., & Nicke, A. (2013). Heteromeric assembly of P2X subunits. Frontiers in Cellular Neuroscience. https://doi.org/10.3389/fncel.2013.00250.

  16. Di Virgilio, F., Sarti, A. C., Falzoni, S., De Marchi, E., & Adinolfi, E. (2018). Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nature Reviews Cancer. https://doi.org/10.1038/s41568-018-0037-0.

  17. Pellegatti, P., Raffaghello, L., Bianchi, G., Piccardi, F., Pistoia, V., & Di Virgilio, F. (2008). Increased level of extracellular ATP at tumor sites: In vivo imaging with plasma membrane luciferase. PLoS One. https://doi.org/10.1371/journal.pone.0002599.

  18. Conley, J. M., Radhakrishnan, S., Valentino, S. A., & Tantama, M. (2017). Imaging extracellular ATP with a genetically-encoded, ratiometric fluorescent sensor. PLoS One. https://doi.org/10.1371/journal.pone.0187481.

  19. Glaser, T., De Oliveira, S. L. B., Cheffer, A., Beco, R., Martins, P., Fornazari, M., et al. (2014). Modulation of mouse embryonic stem cell proliferation and neural differentiation by the P2X7 receptor. PLoS One, 9(5). https://doi.org/10.1371/journal.pone.0096281.

  20. North, R. A., & Barnard, E. A. (1997). Nucleotide receptors. Current Opinion in Neurobiology. https://doi.org/10.1016/S0959-4388(97)80062-1.

  21. Di Virgilio, F., Adinolfi, E., Di Virgilio, F., & Adinol, E. (2017). Extracellular purines, purinergic receptors and tumor growth. Oncogene, 36(3), 293–303. https://doi.org/10.1038/onc.2016.206.

    Article  CAS  PubMed  Google Scholar 

  22. Hofman, P., Cherfils-Vicini, J., Bazin, M., Ilie, M., Juhel, T., Hébuterne, X., et al. (2015). Genetic and pharmacological inactivation of the purinergic P2RX7 receptor dampens inflammation but increases tumor incidence in a mouse model of colitis-associated cancer. Cancer Research, 75(5), 835–845. https://doi.org/10.1158/0008-5472.CAN-14-1778.

    Article  CAS  PubMed  Google Scholar 

  23. Adinolfi, E., Capece, M., Franceschini, A., Falzoni, S., Giuliani, A. L., Rotondo, A., et al. (2015). Accelerated tumor progression in mice lacking the ATP receptor P2X7. Cancer Research, 75(4), 635–644. https://doi.org/10.1158/0008-5472.CAN-14-1259.

    Article  CAS  PubMed  Google Scholar 

  24. De Marchi, E., Orioli, E., Pegoraro, A., Sangaletti, S., Portararo, P., Curti, A., et al. (2019). The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene, 38, 3636–3650. https://doi.org/10.1038/s41388-019-0684-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Slater, M., Danieletto, S., Pooley, M., Teh, L. C., Gidley-Baird, A., & Barden, J. A. (2004). Differentiation between cancerous and normal hyperplastic lobules in breast lesions. Breast Cancer Research and Treatment, 83(1), 1–10. https://doi.org/10.1023/B:BREA.0000010670.85915.0f.

    Article  PubMed  Google Scholar 

  26. Solini, A., Cuccato, S., Ferrari, D., Santini, E., Gulinelli, S., Callegari, M. G., et al. (2008). Increased P2X7 receptor expression and function in thyroid papillary cancer: A new potential marker of the disease? Endocrinology, 149(1), 389–396. https://doi.org/10.1210/en.2007-1223.

    Article  CAS  PubMed  Google Scholar 

  27. Adinolfi, E., Melchiorri, L., Falzoni, S., Chiozzi, P., Morelli, A., Tieghi, A., et al. (2002). P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood, 99(2), 706–708. https://doi.org/10.1182/blood.V99.2.706.

    Article  CAS  PubMed  Google Scholar 

  28. Di Virgilio, F., Ferrari, D., & Adinolfi, E. (2009). P2X7: A growth-promoting receptor - implications for cancer. Purinergic Signalling. https://doi.org/10.1007/s11302-009-9145-3.

  29. Salaro, E., Rambaldi, A., Falzoni, S., Amoroso, F. S., Franceschini, A., Sarti, A. C., et al. (2016). Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death. Scientific Reports, 6(1), 1–13. https://doi.org/10.1038/srep26280.

    Article  CAS  Google Scholar 

  30. Bae, J. Y., Lee, S.-W., Shin, Y.-H., Lee, J.-H., Jahng, J. W., & Park, K. (2017). P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget, 8(30), 48972–48982. https://doi.org/10.18632/oncotarget.16903.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Amoroso, F., Capece, M., Rotondo, A., Cangelosi, D., Ferracin, M., Franceschini, A., Raffaghello, L., Pistoia, V., Varesio, L., & Adinolfi, E. (2015). The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: Evidence in experimental neuroblastoma. Oncogene, 34(41), 5240–5251. https://doi.org/10.1038/onc.2014.444.

    Article  CAS  PubMed  Google Scholar 

  32. Solini, A., Chiozzi, P., Morelli, A., Fellin, R., & Di Virgilio, F. (1999). Human primary fibroblasts in vitro express a purinergic P2X7 receptor coupled to ion fluxes, microvesicle formation and IL-6 release. Journal of Cell Science, 112(3), 297–305.

    CAS  PubMed  Google Scholar 

  33. Kurashima, Y., Amiya, T., Nochi, T., Fujisawa, K., Haraguchi, T., Iba, H., et al. (2012). Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nature Communications, 3, 1034. https://doi.org/10.1038/ncomms2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferrari, D., Pizzirani, C., Adinolfi, E., Lemoli, R. M., Curti, A., Idzko, M., et al. (2006). The P2X7 receptor: A key player in IL-1 processing and release. The Journal of Immunology, 176(7), 3877–3883. https://doi.org/10.4049/jimmunol.179.12.8569-b.

    Article  CAS  PubMed  Google Scholar 

  35. Bianchi, G., Vuerich, M., Pellegatti, P., Marimpietri, D., Emionite, L., Marigo, I., et al. (2014). ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death and Disease, 5(3), 1–12. https://doi.org/10.1038/cddis.2014.109.

    Article  CAS  Google Scholar 

  36. Schenk, U., Frascoli, M., Proietti, M., Geffers, R., Traggiai, E., Buer, J., et al. (2011). ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Science Signaling, 4(162). https://doi.org/10.1126/scisignal.2001270.

  37. De Torre-Minguela, C., Barberà-Cremades, M., Gómez, A. I., Martín-Sánchez, F., & Pelegrín, P. (2016). Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process. Scientific Reports, 6(March), 1–11. https://doi.org/10.1038/srep22586.

    Article  CAS  Google Scholar 

  38. Bergamin, L. S., Braganhol, E., Figueirõ, F., Casali, E. A., Zanin, R. F., Sévigny, J., & Battastini, A. M. O. (2015). Involvement of purinergic system in the release of cytokines by macrophages exposed to glioma-conditioned medium. Journal of Cellular Biochemistry, 116(5), 721–729. https://doi.org/10.1002/jcb.25018.

    Article  CAS  PubMed  Google Scholar 

  39. Cheewatrakoolpong, B., Gilchrest, H., Anthes, J. C., & Greenfeder, S. (2005). Identification and characterization of splice variants of the human P2X7 ATP channel. Biochemical and Biophysical Research Communications, 332(1), 17–27. https://doi.org/10.1016/j.bbrc.2005.04.087.

    Article  CAS  PubMed  Google Scholar 

  40. Feng, Y. H., Li, X., Zeng, R., & Gorodeski, G. I. (2006). Endogenously expressed truncated P2X7 receptor lacking the C-terminus is preferentially upregulated in epithelial cancer cells and fails to mediate ligand-induced pore formation and apoptosis. Nucleosides, Nucleotides and Nucleic Acids, 25, 1271–1276. https://doi.org/10.1080/15257770600890921.

    Article  CAS  PubMed  Google Scholar 

  41. Giuliani, A. L., Colognesi, D., Ricco, T., Roncato, C., Capece, M., Amoroso, F., et al. (2014). Trophic activity of human P2X7 receptor isoforms a and B in osteosarcoma. PLoS One. https://doi.org/10.1371/journal.pone.0107224.

  42. Adinolfi, E., Cirillo, M., Woltersdorf, R., Falzoni, S., Chiozzi, P., Pellegatti, P., et al. (2010). Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. The FASEB Journal, 24(9), 3393–3404. https://doi.org/10.1096/fj.09-153601.

    Article  CAS  PubMed  Google Scholar 

  43. Feng, Y. H., Li, X., Wang, L., Zhou, L., & Gorodeski, G. I. (2006). A truncated P2X7 receptor variant (P2X7-j) endogenously expressed in cervical cancer cells antagonizes the full-length P2X7 receptor through hetero-oligomerization. Journal of Biological Chemistry, 281(25), 17228–17237. https://doi.org/10.1074/jbc.M602999200.

    Article  CAS  PubMed  Google Scholar 

  44. Kim, M., Jiang, L. H., Wilson, H. L., North, R. A., & Surprenant, A. (2001). Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO Journal, 20(22), 6347–6358. https://doi.org/10.1093/emboj/20.22.6347.

    Article  CAS  PubMed  Google Scholar 

  45. Lenertz, L. Y., Wang, Z., Guadarrama, A., Hill, L. M., Gavala, M. L., & Bertics, P. J. (2010). Mutation of putative N-linked glycosylation sites on the human nucleotide receptor P2X7 reveals a key residue important for receptor function. Biochemistry, 49(22), 4611–4619. https://doi.org/10.1021/bi902083n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ratajczak, M. Z., Shin, D. M., Liu, R., Marlicz, W., Tarnowski, M., Ratajczak, J., & Kucia, M. (2010). Epiblast/germ line hypothesis of cancer development revisited: Lesson from the presence of Oct-4+ cells in adult tissues. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-010-9143-4.

  47. Tang, D. G. (2012). Understanding cancer stem cell heterogeneity and plasticity. Cell Research. https://doi.org/10.1038/cr.2012.13.

  48. Albini, A., Bruno, A., Gallo, C., Pajardi, G., Noonan, D. M., & Dallaglio, K. (2015). Cancer stem cells and the tumor microenvironment: Interplay in tumor heterogeneity. Connective Tissue Research, 56(5), 414–425. https://doi.org/10.3109/03008207.2015.1066780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rycaj, K., & Tang, D. G. (2015). Cell-of-origin of cancer versus cancer stem cells: Assays and interpretations. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-15-0798.

  50. Dong, J., Zhao, Y., Huang, Q., Fei, X., Diao, Y., Shen, Y., et al. (2011). Glioma Stem/Progenitor Cells Contribute to Neovascularization via Transdifferentiation. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-010-9169-7.

  51. Wu, P. Y., Lin, Y. C., Chang, C. L., Lu, H. T., Chin, C. H., Hsu, T. T., et al. (2009). Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells. Cellular Signalling, 21(6), 881–891. https://doi.org/10.1016/j.cellsig.2009.01.036.

    Article  CAS  PubMed  Google Scholar 

  52. D’Alimonte, I., Nargi, E., Zuccarini, M., Lanuti, P., Di Iorio, P., Giuliani, P., et al. (2015). Potentiation of temozolomide antitumor effect by purine receptor ligands able to restrain the in vitro growth of human glioblastoma stem cells. Purinergic Signalling, 11(3), 331–346. https://doi.org/10.1007/s11302-015-9454-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ulrich, H., Ratajczak, M. Z., Schneider, G., Adinolfi, E., Orioli, E., Ferrazoli, E. G., et al. (2018). Kinin and Purine signaling contributes to neuroblastoma metastasis. Frontiers in Pharmacology, 9(MAY), 1–32. https://doi.org/10.3389/fphar.2018.00500.

    Article  CAS  Google Scholar 

  54. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., & Weinberg, R. A. (2008). The epithelial-Mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715. https://doi.org/10.1016/j.cell.2008.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morel, A. P., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 3(8), e2888. https://doi.org/10.1371/journal.pone.0002888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grosse-Wilde, A., D’Hérouël, A. F., McIntosh, E., Ertaylan, G., Skupin, A., Kuestner, R. E., et al. (2015). Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS One, 10(5), e0126522. https://doi.org/10.1371/journal.pone.0126522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sampson, V. B., David, J. M., Puig, I., Patil, P. U., De Herreros, A. G., Thomas, G. V., & Rajasekaran, A. K. (2014). Wilms’ tumor protein induces an epithelial-mesenchymal hybrid differentiation state in clear cell renal cell carcinoma. PLoS One, 9(7), e102041. https://doi.org/10.1371/journal.pone.0102041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schliekelman, M. J., Taguchi, A., Zhu, J., Dai, X., Rodriguez, J., Celiktas, M., et al. (2015). Molecular portraits of epithelial, mesenchymal, and hybrid states in lung adenocarcinoma and their relevance to survival. Cancer Research, 75(9), 1789–1800. https://doi.org/10.1158/0008-5472.CAN-14-2535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lim, J., & Thiery, J. P. (2012). Epithelial-mesenchymal transitions: Insights from development. Development (Cambridge), 139, 3471–3486. https://doi.org/10.1242/dev.071209.

    Article  CAS  Google Scholar 

  60. Thiery, J. P., Acloque, H., Huang, R. Y. J., & Nieto, M. A. (2009). Epithelial-Mesenchymal transitions in development and disease. Cell, 139, 871–890. https://doi.org/10.1016/j.cell.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  61. Grünert, S., Jechlinger, M., & Beug, H. (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nature Reviews Molecular Cell Biology, 4, 657–665. https://doi.org/10.1038/nrm1175.

    Article  CAS  PubMed  Google Scholar 

  62. Huang, R. Y. J., Guilford, P., & Thiery, J. P. (2012). Early events in cell adhesion and polarity during epithelialmesenchymal transition. Journal of Cell Science, 125, 4417–4422. https://doi.org/10.1242/jcs.099697.

    Article  CAS  PubMed  Google Scholar 

  63. De Craene, B., & Berx, G. (2013). Regulatory networks defining EMT during cancer initiation and progression. Nature Reviews Cancer, 13(2), 97–110. https://doi.org/10.1038/nrc3447.

    Article  CAS  PubMed  Google Scholar 

  64. Pagan, R., Martín, I., Alonso, A., Llobera, M., & Vilaró, S. (1996). Vimentin filaments follow the preexisting cytokeratin network during epithelial-mesenchymal transition of cultured neonatal rat hepatocytes. Experimental Cell Research, 222(2), 333–344. https://doi.org/10.1006/excr.1996.0043.

    Article  CAS  PubMed  Google Scholar 

  65. Yokoyama, K., Kamata, N., Fujimoto, R., Tsutsumi, S., Tomonari, M., Taki, M., et al. (2003). Increased invasion and matrix metalloproteinase-2 expression by snail-induced mesenchymal transition in squamous cell carcinomas. International Journal of Oncology, 22(4), 891–898. https://doi.org/10.3892/ijo.22.4.891.

    Article  CAS  PubMed  Google Scholar 

  66. Tomita, K., Van Bokhoven, A., Van Leenders, G. J. L. H., Ruijter, E. T. G., Jansen, C. F. J., Bussemakers, M. J. G., & Schalken, J. A. (2000). Cadherin switching in human prostate cancer progression. Cancer Research, 60(13), 3650–3654. https://doi.org/10.5980/jpnjurol.91.92.

    Article  CAS  PubMed  Google Scholar 

  67. Beerling, E., Seinstra, D., de Wit, E., Kester, L., van der Velden, D., Maynard, C., Schäfer, R., van Diest, P., Voest, E., van Oudenaarden, A., Vrisekoop, N., & van Rheenen, J. (2016). Plasticity between epithelial and Mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Reports, 14(10), 2281–2288. https://doi.org/10.1016/j.celrep.2016.02.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939. https://doi.org/10.1016/j.cell.2004.06.006.

    Article  CAS  PubMed  Google Scholar 

  69. Mittal, V. (2018). Epithelial Mesenchymal transition in tumor metastasis. Annual Review of Pathology: Mechanisms of Disease, 13, 395–412.

    Article  CAS  Google Scholar 

  70. Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Research, 66(23), 11271–11278. https://doi.org/10.1158/0008-5472.CAN-06-2044.

    Article  CAS  PubMed  Google Scholar 

  71. Zheng, X., Carstens, J. L., Kim, J., Scheible, M., Kaye, J., Sugimoto, H., Wu, C. C., LeBleu, V., & Kalluri, R. (2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 527(7579), 525–530. https://doi.org/10.1038/nature16064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fischer, K. R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S. T. C., et al. (2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 527(7579), 472–476. https://doi.org/10.1038/nature15748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Eckert, M. A., Lwin, T. M., Chang, A. T., Kim, J., Danis, E., Ohno-Machado, L., & Yang, J. (2011). Twist1-induced Invadopodia formation promotes tumor metastasis. Cancer Cell, 19(3), 372–386. https://doi.org/10.1016/j.ccr.2011.01.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Caramel, J., Papadogeorgakis, E., Hill, L., Browne, G. J., Richard, G., Wierinckx, A., Saldanha, G., Osborne, J., Hutchinson, P., Tse, G., Lachuer, J., Puisieux, A., Pringle, J. H., Ansieau, S., & Tulchinsky, E. (2013). A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell, 24(4), 466–480. https://doi.org/10.1016/j.ccr.2013.08.018.

    Article  CAS  PubMed  Google Scholar 

  75. Krebs, A. M., Mitschke, J., Losada, M. L., Schmalhofer, O., Boerries, M., Busch, H., et al. (2017). The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nature Cell Biology, 19(5), 518–529. https://doi.org/10.1038/ncb3513.

    Article  CAS  PubMed  Google Scholar 

  76. Xue, C., Plieth, D., Venkov, C., Xu, C., & Neilson, E. G. (2003). The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Research, 63(12), 3386–3394.

    CAS  PubMed  Google Scholar 

  77. Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590. https://doi.org/10.1016/j.ccr.2011.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sugino, T., Yamaguchi, T., Ogura, G., Saito, A., Hashimoto, T., Hoshi, N., et al. (2004). Morphological evidence for an invasion-independent metastasis pathway exists in multiple human cancers. BMC Medicine, 2(9). https://doi.org/10.1186/1741-7015-2-9.

  79. Cheung, K. J., & Ewald, A. J. (2016). A collective route to metastasis: Seeding by tumor cell clusters. Science, 352(6282), 167–169. https://doi.org/10.1126/science.aaf6546.

    Article  CAS  PubMed  Google Scholar 

  80. Yu, M., Bardia, A., Wittner, B. S., Stott, S. L., Smas, M. E., Ting, D. T., Isakoff, S. J., Ciciliano, J. C., Wells, M. N., Shah, A. M., Concannon, K. F., Donaldson, M. C., Sequist, L. V., Brachtel, E., Sgroi, D., Baselga, J., Ramaswamy, S., Toner, M., Haber, D. A., & Maheswaran, S. (2013). Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 339(6119), 580–584. https://doi.org/10.1126/science.1228522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ridge, S. M., Sullivan, F. J., & Glynn, S. A. (2017). Mesenchymal stem cells: Key players in cancer progression. Molecular Cancer. https://doi.org/10.1186/s12943-017-0597-8.

  82. Kong, D., Li, Y., Wang, Z., & Sarkar, F. H. (2011). Cancer stem cells and epithelial-to-Mesenchymal transition (EMT)-phenotypic cells: Are they cousins or twins? Cancers. https://doi.org/10.3390/cancers30100716.

  83. Jögi, A., Vaapil, M., Johansson, M., Påhlman, S., Jogi, A., Vaapil, M., et al. (2012). Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Upsala Journal of Medical Sciences, 117(2), 217–224. https://doi.org/10.3109/03009734.2012.659294.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Liu, S., Cong, Y., Wang, D., Sun, Y., Deng, L., Liu, Y., Martin-Trevino, R., Shang, L., McDermott, S., Landis, M. D., Hong, S., Adams, A., D'Angelo, R., Ginestier, C., Charafe-Jauffret, E., Clouthier, S. G., Birnbaum, D., Wong, S. T., Zhan, M., Chang, J. C., & Wicha, M. S. (2014). Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports, 2(1), 78–91. https://doi.org/10.1016/j.stemcr.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  85. Tsuji, T., Ibaragi, S., Shima, K., Hu, M. G., Katsurano, M., Sasaki, A., & Hu, G. F. (2008). Epithelial-mesenchymal transition induced by growth suppressor p12 CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Research, 68(24), 10377–10386. https://doi.org/10.1158/0008-5472.CAN-08-1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jolly, M. K., Jia, D., Boareto, M., Mani, S. A., Pienta, K. J., Ben-Jacob, E., … Levine, H. (2015). Coupling the modules of EMT and stemness: A tunable ‘stemness window’ model. Oncotarget.

    Google Scholar 

  87. Luzzani, C. D., & Miriuka, S. G. (2017). Pluripotent stem cells as a robust source of Mesenchymal stem cells. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-016-9695-z.

  88. Giannuzzo, A., Pedersen, S. F., & Novak, I. (2015). The P2X7 receptor regulates cell survival, migration and invasion of pancreatic ductal adenocarcinoma cells. Molecular Cancer, 14(1). https://doi.org/10.1186/s12943-015-0472-4.

  89. Zuccarini, M., Giuliani, P., Buccella, S., Di Liberto, V., Mudò, G., Belluardo, N., et al. (2017). Modulation of the TGF-β1-induced epithelial to mesenchymal transition (EMT) mediated by P1 and P2 purine receptors in MDCK cells. Purinergic Signalling, 13(4), 429–442. https://doi.org/10.1007/s11302-017-9571-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qiu, Y., Li, W. H., Zhang, H. Q., Liu, Y., Tian, X. X., & Fang, W. G. (2014). P2X7 mediates ATP-driven invasiveness in prostate cancer cells. PLoS One, 9(12). https://doi.org/10.1371/journal.pone.0114371.

  91. Azimi, I., Beilby, H., Davis, F. M., Marcial, D. L., Kenny, P. A., Thompson, E. W., et al. (2016). Altered purinergic receptor-Ca 2+ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Molecular Oncology, 10(1), 166–178. https://doi.org/10.1016/j.molonc.2015.09.006.

    Article  CAS  PubMed  Google Scholar 

  92. Bachelder, R. E., Yoon, S.-O., Franci, C., de Herreros, A. G., & Mercurio, A. M. (2005). Glycogen synthase kinase-3 is an endogenous inhibitor of snail transcription: Implications for the epithelial-mesenchymal transition. The Journal of Cell Biology, 168(1), 29–33. https://doi.org/10.1083/jcb.200409067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gonzalez-Moreno, O., Lecanda, J., Green, J. E., Segura, V., Catena, R., Serrano, D., & Calvo, A. (2010). VEGF elicits epithelial-mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop. Experimental Cell Research, 316(4), 554–567. https://doi.org/10.1016/j.yexcr.2009.11.020.

    Article  CAS  PubMed  Google Scholar 

  94. Cho, H. J., Baek, K. E., Saika, S., Jeong, M. J., & Yoo, J. (2007). Snail is required for transforming growth factor-β-induced epithelial-mesenchymal transition by activating PI3 kinase/Akt signal pathway. Biochemical and Biophysical Research Communications, 353(2), 337–343. https://doi.org/10.1016/j.bbrc.2006.12.035.

    Article  CAS  PubMed  Google Scholar 

  95. Young, C. N. J., Chira, N., Róg, J., Al-Khalidi, R., Benard, M., Galas, L., et al. (2018). Sustained activation of P2X7 induces MMP-2-evoked cleavage and functional purinoceptor inhibition. Journal of Molecular Cell Biology, 10(3), 229–242. https://doi.org/10.1093/jmcb/mjx030.

    Article  CAS  PubMed  Google Scholar 

  96. Xu, H., Li, M., Zhou, Y., Wang, F., Li, X., Wang, L., & Fan, Q. (2016). S100A4 participates in epithelial-mesenchymal transition in breast cancer via targeting MMP2. Tumor Biology, 37(3), 2925–2932. https://doi.org/10.1007/s13277-015-3709-3.

    Article  CAS  PubMed  Google Scholar 

  97. Pan, S. T., Li, Z. L., He, Z. X., Qiu, J. X., & Zhou, S. F. (2016). Molecular mechanisms for tumour resistance to chemotherapy. Clinical and Experimental Pharmacology and Physiology. https://doi.org/10.1111/1440-1681.12581.

  98. Uchiyama, Y., Shibata, M., Koike, M., Yoshimura, K., & Sasaki, M. (2008). Autophagy-physiology and pathophysiology. Histochemistry and Cell Biology. https://doi.org/10.1007/s00418-008-0406-y.

  99. Singh, R., & Cuervo, A. M. (2011). Autophagy in the cellular energetic balance. Cell Metabolism, 13(5), 495–504. https://doi.org/10.1016/j.cmet.2011.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gao, L., Dou, Z.-C., Ren, W.-H., Li, S.-M., Liang, X., & Zhi, K.-Q. (2019). CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK½/mTOR signaling pathways in oral squamous cell carcinomas. Cell Death & Disease, 10, 745. https://doi.org/10.1038/s41419-019-1971-9.

    Article  CAS  Google Scholar 

  101. Sun, Y., Chen, Y., Zhang, J., Cao, L., He, M., Liu, X., et al. (2017). TMEM74 promotes tumor cell survival by inducing autophagy via interactions with ATG16L1 and ATG9A. Cell Death & Disease, 8, e3031. https://doi.org/10.1038/cddis.2017.370.

    Article  CAS  Google Scholar 

  102. Katheder, N. S., Khezri, R., O’Farrell, F., Schultz, S. W., Jain, A., Schink, M. K. O., et al. (2017). Microenvironmental autophagy promotes tumour growth. Nature, 541(7637), 417–420. https://doi.org/10.1038/nature20815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Amaravadi, R. K., Yu, D., Lum, J. J., Bui, T., Christophorou, M. A., Evan, G. I., Thomas-Tikhonenko, A., & Thompson, C. B. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. Journal of Clinical Investigation, 117, 326–336. https://doi.org/10.1172/JCI28833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Apel, A., Herr, I., Schwarz, H., Rodemann, H. P., & Mayer, A. (2008). Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Research, 68, 1485–1494. https://doi.org/10.1158/0008-5472.CAN-07-0562.

    Article  CAS  PubMed  Google Scholar 

  105. Liu, D., Yang, Y., Liu, Q., & Wang, J. (2011). Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells. Medical Oncology, 28(1), 105–111. https://doi.org/10.1007/s12032-009-9397-3.

    Article  CAS  PubMed  Google Scholar 

  106. Shingu, T., Fujiwara, K., Bogler, O., Akiyama, Y., Meritake, K., Shinojima, N., et al. (2009). Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. International Journal of Cancer, 124(5), 1060–1071. https://doi.org/10.1002/ijc.24030.

    Article  PubMed  Google Scholar 

  107. Vera-Ramirez, L., Vodnala, S. K., Nini, R., Hunter, K. W., & Green, J. E. (2018). Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nature Communications, 9, 1944. https://doi.org/10.1038/s41467-018-04070-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wolf, J., Dewi, D. L., Fredebohm, J., Müller-Decker, K., Flechtenmacher, C., Hoheisel, J. D., & Boettcher, M. (2013). A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Research, 15(6), R109. https://doi.org/10.1186/bcr3576.

    Article  CAS  PubMed  Google Scholar 

  109. Gong, C., Bauvy, C., Tonelli, G., Yue, W., Deloménie, C., Nicolas, V., et al. (2013). Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene, 32(18), 2261–2272. https://doi.org/10.1038/onc.2012.252.

    Article  CAS  PubMed  Google Scholar 

  110. Sharif, T., Martell, E., Dai, C., Kennedy, B. E., Murphy, P., Clements, D. R., et al. (2017). Autophagic homeostasis is required for the pluripotency of cancer stem cells. Autophagy, 13(2), 264–284. https://doi.org/10.1080/15548627.2016.1260808.

    Article  CAS  PubMed  Google Scholar 

  111. Guo, J. Y., Chen, H. Y., Mathew, R., Fan, J., Strohecker, A. M., Karsli-Uzunbas, G., Kamphorst, J. J., Chen, G., Lemons, J. M., Karantza, V., Coller, H. A., Dipaola, R. S., Gelinas, C., Rabinowitz, J. D., & White, E. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes and Development, 25(5), 460–470. https://doi.org/10.1101/gad.2016311.

    Article  CAS  PubMed  Google Scholar 

  112. Lock, R., Roy, S., Kenific, C. M., Su, J. S., Salas, E., Ronen, S. M., & Debnath, J. (2011). Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Molecular Biology of the Cell, 22(2), 165–178. https://doi.org/10.1091/mbc.E10-06-0500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yang, S., Wang, X., Contino, G., Liesa, M., Sahin, E., Ying, H., et al. (2011). Pancreatic cancers require autophagy for tumor growth. Genes and Development, 25(7), 717–729. https://doi.org/10.1101/gad.2016111.

    Article  CAS  PubMed  Google Scholar 

  114. Nassour, J., Radford, R., Correia, A., Fusté, J. M., Schoell, B., Jauch, A., et al. (2019). Autophagic cell death restricts chromosomal instability during replicative crisis. Nature, 565(7741), 659–663. https://doi.org/10.1038/s41586-019-0885-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mathew, R., Kongara, S., Beaudoin, B., Karp, C. M., Bray, K., Degenhardt, K., et al. (2007). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes and Development, 21(11), 1367–1381. https://doi.org/10.1101/gad.1545107.

    Article  CAS  PubMed  Google Scholar 

  116. Karantza-Wadsworth, V., Patel, S., Kravchuk, O., Chen, G., Mathew, R., Jin, S., & White, E. (2007). Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes and Development, 21(13), 1621–1635. https://doi.org/10.1101/gad.1565707.

    Article  CAS  PubMed  Google Scholar 

  117. Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C. B., & Tsujimoto, Y. (2004). Role of Bcl-2 family proteins in a non-apoptopic programmed cell death dependent on autophagy genes. Nature Cell Biology, 6(12), 1221–1228. https://doi.org/10.1038/ncb1192.

    Article  CAS  PubMed  Google Scholar 

  118. Liu, Y., Shoji-Kawata, S., Sumpter, R. M., Wei, Y., Ginet, V., Zhang, L., et al. (2013). Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proceedings of the National Academy of Sciences of the United States of America, 110(51), 20364–20371. https://doi.org/10.1073/pnas.1319661110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xie, C., Ginet, V., Sun, Y., Koike, M., Zhou, K., Li, T., Li, H., Li, Q., Wang, X., Uchiyama, Y., Truttmann, A. C., Kroemer, G., Puyal, J., Blomgren, K., & Zhu, C. (2016). Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy, 12, 410–423. https://doi.org/10.1080/15548627.2015.1132134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sun, L., Gao, J., Zhao, M., Cui, J., Li, Y., Yang, X., et al. (2015). A novel cognitive impairment mechanism that astrocytic p-connexin 43 promotes neuronic autophagy via activation of P2X7R and down-regulation of GLT-1 expression in the hippocampus following traumatic brain injury in rats. Behavioural Brain Research. https://doi.org/10.1016/j.bbr.2015.05.049.

  121. Young, C. N. J., Sinadinos, A., Lefebvre, A., Chan, P., Arkle, S., Vaudry, D., & Gorecki, D. C. (2015). A novel mechanism of autophagic cell death in dystrophic muscle regulated by P2RX7 receptor large-pore formation and HSP90. Autophagy. https://doi.org/10.4161/15548627.2014.994402.

  122. Biswas, D., Qureshi, O. S., Lee, W. Y., Croudace, J. E., Mura, M., & Lammas, D. A. (2008). ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC Immunology. https://doi.org/10.1186/1471-2172-9-35.

  123. Sultana Rekha, R., Rao Muvva, S. J., Wan, M., Raqib, R., Bergman, P., Brighenti, S., et al. (2015). Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of mycobacterium tuberculosis in human macrophages. Autophagy. https://doi.org/10.1080/15548627.2015.1075110.

  124. Takenouchi, T., Nakai, M., Iwamaru, Y., Sugama, S., Tsukimoto, M., Fujita, M., et al. (2009). The activation of P2X7 receptor impairs Lysosomal functions and stimulates the release of Autophagolysosomes in microglial cells. The Journal of Immunology. https://doi.org/10.4049/jimmunol.0802577.

  125. Orioli, E., De Marchi, E., Giuliani, A. L., & Adinolfi, E. (2017). P2X7 receptor orchestrates multiple Signalling pathways triggering inflammation, autophagy and metabolic/trophic responses. Current Medicinal Chemistry, 24(21). https://doi.org/10.2174/0929867324666170303161659.

  126. Fabbrizio, P., Amadio, S., Apolloni, S., & Volonté, C. (2017). P2X7 receptor activation modulates autophagy in SOD1-G93A mouse microglia. Frontiers in Cellular Neuroscience. https://doi.org/10.3389/fncel.2017.00249.

  127. Bloise, E., Ortiga-Carvalho, T. M., Reis, F. M., Lye, S. J., Gibb, W., & Matthews, S. G. (2016). ATP-binding cassette transporters in reproduction: A new frontier. Human Reproduction Update. https://doi.org/10.1093/humupd/dmv049.

  128. El-Awady, R., Saleh, E., Hashim, A., Soliman, N., Dallah, A., Elrasheed, A., & Elakraa, G. (2017). The role of eukaryotic and prokaryotic ABC transporter family in failure of chemotherapy. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2016.00535.

  129. Uribe, D., Torres, Á., Rocha, J. D., Niechi, I., Oyarzún, C., Sobrevia, L., et al. (2017). Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling. Molecular Aspects of Medicine. https://doi.org/10.1016/j.mam.2017.01.009.

  130. Begicevic, R. R., & Falasca, M. (2017). ABC transporters in cancer stem cells: Beyond chemoresistance. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18112362.

  131. Alisi, A., Cho, W. C., Locatelli, F., & Fruci, D. (2013). Multidrug resistance and cancer stem cells in neuroblastoma and hepatoblastoma. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms141224706.

  132. Liu, P. P., Liao, J., Tang, Z. J., Wu, W. J., Yang, J., Zeng, Z. L., et al. (2014). Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death and Differentiation. https://doi.org/10.1038/cdd.2013.131.

  133. Marty, V., Médina, C., Combe, C., Parnet, P., & Amédée, T. (2005). ATP binding cassette transporter ABC1 is required for the release of interleukin-1β by P2X7-stimulated and lipopolysaccharide-primed mouse Schwann cells. GLIA, 49(4), 511–519. https://doi.org/10.1002/glia.20138.

    Article  PubMed  Google Scholar 

  134. Kang, J., Kang, N., Lovatt, D., Torres, A., Zhao, Z., Lin, J., & Nedergaard, M. (2008). Connexin 43 hemichannels are permeable to ATP. Journal of Neuroscience, 28(18), 4702–4711. https://doi.org/10.1523/JNEUROSCI.5048-07.2008.

    Article  CAS  PubMed  Google Scholar 

  135. Huang, Y. J., Maruyama, Y., Dvoryanchikov, G., Pereira, E., Chaudhari, N., & Roper, S. D. (2007). The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6436–6441. https://doi.org/10.1073/pnas.0611280104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hisadome, K., Koyama, T., Kimura, C., Droogmans, G., Ito, Y., & Oike, M. (2002). Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. Journal of General Physiology, 119(6), 511–520. https://doi.org/10.1085/jgp.20028540.

    Article  CAS  PubMed  Google Scholar 

  137. Koyama, T., Kimura, C., Hayashi, M., Watanabe, M., Karashima, Y., & Oike, M. (2009). Hypergravity induces ATP release and actin reorganization via tyrosine phosphorylation and RhoA activation in bovine endothelial cells. Pflugers Archiv European Journal of Physiology, 457(4), 711–719. https://doi.org/10.1007/s00424-008-0544-z.

    Article  CAS  PubMed  Google Scholar 

  138. Gatof, D., Kilic, G., & Fitz, J. G. (2004). Vesicular exocytosis contributes to volume-sensitive ATP release in biliary cells. American Journal of Physiology - Gastrointestinal and Liver Physiology, 286(4), G538–G546. https://doi.org/10.1152/ajpgi.00355.2003.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, Z., Chen, G., Zhou, W., Song, A., Xu, T., Luo, Q., et al. (2007). Regulated ATP release from astrocytes through lysosome exocytosis. Nature Cell Biology, 9(8), 945–953. https://doi.org/10.1038/ncb1620.

    Article  CAS  PubMed  Google Scholar 

  140. Suadicani, S. O., Brosnan, C. F., & Scemes, E. (2006). P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. Journal of Neuroscience, 26(5), 1378–1385. https://doi.org/10.1523/JNEUROSCI.3902-05.2006.

    Article  CAS  PubMed  Google Scholar 

  141. Roman, R. M., Lomri, N., Braunstein, G., Feranchak, A. P., Simeoni, L. A., Davison, A. K., et al. (2001). Evidence for multidrug resistance-1 P-glycoprotein-dependent regulation of cellular ATP permeability. Journal of Membrane Biology, 183(3), 165–173. https://doi.org/10.1007/s00232-001-0064-7.

    Article  CAS  PubMed  Google Scholar 

  142. Ballerini, P., Di Iorio, P., Ciccarelli, R., Nargi, E., D’Alimonte, I., Traversa, U., et al. (2002). Glial cells express multiple ATP binding cassette proteins which are involved in ATP release. NeuroReport, 13(14), 1789–1792. https://doi.org/10.1097/00001756-200210070-00019.

    Article  CAS  PubMed  Google Scholar 

  143. Zhao, Y., Migita, K., Sun, J., & Katsuragi, T. (2010). MRP transporters as membrane machinery in the bradykinin-inducible export of ATP. Naunyn-Schmiedeberg’s Archives of Pharmacology, 381(4), 315–320. https://doi.org/10.1007/s00210-009-0490-0.

    Article  CAS  PubMed  Google Scholar 

  144. Li, Y. C., Park, M. J., Ye, S. K., Kim, C. W., & Kim, Y. N. (2006). Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. American Journal of Pathology, 168(4), 1107–1118. https://doi.org/10.2353/ajpath.2006.050959.

    Article  CAS  PubMed  Google Scholar 

  145. Robinson, L. E., Shridar, M., Smith, P., & Murrell-lagnado, R. D. (2014). Plasma. Membrane Cholesterol as a Regulator of Human and Rodent P2X7 Receptor Activation and Sensitization *, 289(46), 31983–31994. https://doi.org/10.1074/jbc.M114.574699.

    Article  CAS  Google Scholar 

  146. Karasawa, A., Michalski, K., Mikhelzon, P., & Kawate, T. (2017). The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. eLife, 6(1), 1–22. https://doi.org/10.7554/eLife.31186.

    Article  Google Scholar 

  147. Resnik, N., Repnik, U., Kreft, M. E., Sepčić, K., Maček, P., Turk, B., & Veranič, P. (2015). Highly selective anti-cancer activity of cholesterol-interacting agents methyl-β-cyclodextrin and ostreolysin a/pleurotolysin B protein complex on urothelial cancer cells. PLoS One, 10(9). https://doi.org/10.1371/journal.pone.0137878.

  148. Barden, J. A., Sluyter, R., Gu, B. J., & Wiley, J. S. (2003). Specific detection of non-functional human P2X7 receptors in HEK293 cells and B-lymphocytes. FEBS Letters, 538(1–3), 159–162. https://doi.org/10.1016/S0014-5793(03)00172-8.

    Article  CAS  PubMed  Google Scholar 

  149. Slater, M., Danieletto, S., Gidley-Baird, A., Teh, L. C., & Barden, J. A. (2004). Early prostate cancer detected using expression of non-functional cytolytic P2X7 receptors. Histopathology, 44(3), 206–215. https://doi.org/10.1111/j.0309-0167.2004.01798.x.

    Article  CAS  PubMed  Google Scholar 

  150. Slater, M., Scolyer, R. A., Gidley-Baird, A., Thompson, J. F., & Barden, J. A. (2003). Increased expression of apoptotic markers in melanoma. Melanoma Research, 13(2), 137–145. https://doi.org/10.1097/00008390-200304000-00005.

    Article  CAS  PubMed  Google Scholar 

  151. Gilbert, S., Oliphant, C., Hassan, S., Peille, A., Bronsert, P., Falzoni, S., di Virgilio, F., McNulty, S., & Lara, R. (2018). ATP in the tumour microenvironment drives expression of nfP2X7, a key mediator of cancer cell survival. Oncogene, 38(2), 194–208. https://doi.org/10.1038/s41388-018-0426-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gilbert, S. M., Gidley Baird, A., Glazer, S., Barden, J. A., Glazer, A., Teh, L. C., & King, J. (2017). A phase I clinical trial demonstrates that nfP2X7-targeted antibodies provide a novel, safe and tolerable topical therapy for basal cell carcinoma. British Journal of Dermatology, 177(1), 117–124. https://doi.org/10.1111/bjd.15364.

    Article  CAS  PubMed  Google Scholar 

  153. Huang, S. H., Perez-Ordonez, B., Weinreb, I., Hope, A., Massey, C., Waldron, J. N., et al. (2013). Natural course of distant metastases following radiotherapy or chemoradiotherapy in HPV-related oropharyngeal cancer. Oral Oncology. https://doi.org/10.1016/j.oraloncology.2012.07.015.

  154. Park, S. I., Liao, J., Berry, J. E., Li, X., Koh, A. J., Michalski, M. E., et al. (2012). Cyclophosphamide creates a receptive microenvironment for prostate cancer skeletal metastasis. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-11-2928.

  155. Kim, C. H., Wu, W., Wysoczynski, M., Abdel-Latif, A., Sunkara, M., Morris, A., et al. (2012). Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: A novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia, 26(1), 106–116. https://doi.org/10.1038/leu.2011.185.

    Article  CAS  PubMed  Google Scholar 

  156. Di Virgilio, F., Dal Ben, D., Sarti, A. C., Giuliani, A. L., & Falzoni, S. (2017). The P2X7 receptor in infection and inflammation. Immunity. https://doi.org/10.1016/j.immuni.2017.06.020.

  157. Coutinho-Silva, R., Morandini, A., & Savio, L. B. (2014). The role of p2x7 receptor in infectious inflammatory diseases and the influence of ectonucleotidases. Biomedical Journal. https://doi.org/10.4103/2319-4170.127803.

  158. Schneider, G., Glaser, T., Lameu, C., Abdelbaset-Ismail, A., Sellers, Z. P., Moniuszko, M., et al. (2015). Extracellular nucleotides as novel, underappreciated pro-metastatic factors that stimulate purinergic signaling in human lung cancer cells. Molecular Cancer, 14, 201. https://doi.org/10.1186/s12943-015-0469-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

CL and HU are grateful for the funding of São Paulo Research Foundation, FAPESP (Project No. 2015/19128-2 and 2018/07366-4, respectively), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Brazil. ILAR is grateful for FAPESP fellowships (Project No. 2017/06132-7-DD). VFAS thanks the National Council for Scientific and Technological Development (CNPq, Project No. 141264/2017-9). Authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudiana Lameu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnaud-Sampaio, V.F., Rabelo, I.L.A., Ulrich, H. et al. The P2X7 Receptor in the Maintenance of Cancer Stem Cells, Chemoresistance and Metastasis. Stem Cell Rev and Rep 16, 288–300 (2020). https://doi.org/10.1007/s12015-019-09936-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09936-w

Keywords

Navigation