[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Overview of Radiation Therapy in the Management of Localized and Metastatic Prostate Cancer

  • REVIEW
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal is to describe the evolution of radiation therapy (RT) utilization in the management of localized and metastatic prostate cancer.

Recent Findings

Long term data for a variety of hypofractionated definitive RT dose-fractionation schemes has matured, allowing patients and providers many standard-of-care options to choose from. Post-prostatectomy, adjuvant RT has largely been replaced by an early salvage approach. Multiparametric MRI and PSMA PET have enabled increasingly targeted RT delivery to the prostate and oligometastatic tumors. Areas of active investigation include determining the value of proton beam therapy and perirectal spacers, and optimally incorporate genomic tumor profiling and next generation hormonal therapies with RT in the curative setting.

Summary

The use of radiation therapy to treat prostate cancer is rapidly evolving. In the coming years, there will be continued improvements in a variety of areas to enhance the value of RT in multidisciplinary prostate cancer management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. National Comprehensive Cancer Network. NCCN Guidelines, Prostate Cancer. 2023. p. NCCN Guidelines Version 4.2023. Available from https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1459.

  2. Brenner DJ, Hall EJ. Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys. 1999;43(5):1095–101. https://doi.org/10.1016/s0360-3016(98)00438-6.

    Article  CAS  PubMed  Google Scholar 

  3. Pollack A, Walker G, Horwitz EM, Price R, Feigenberg S, Konski AA, et al. Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol. 2013;31(31):3860–8. https://doi.org/10.1200/JCO.2013.51.1972.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee WR, Dignam JJ, Amin MB, Bruner DW, Low D, Swanson GP, et al. Randomized phase III noninferiority study comparing two radiotherapy fractionation schedules in patients with low-risk prostate cancer. J Clin Oncol. 2016;34(20):2325–32. https://doi.org/10.1200/JCO.2016.67.0448.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dearnaley D, Syndikus I, Sumo G, Bidmead M, Bloomfield D, Clark C, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial. Lancet Oncol. 2012;13(1):43–54. https://doi.org/10.1016/S1470-2045(11)70293-5.

    Article  PubMed  Google Scholar 

  6. Katz AJ, Kang J. Stereotactic body radiotherapy as treatment for organ confined low- and intermediate-risk prostate carcinoma, a 7-year study. Front Oncol. 2014;4:240. https://doi.org/10.3389/fonc.2014.00240.

    Article  PubMed  PubMed Central  Google Scholar 

  7. King CR, Freeman D, Kaplan I, Fuller D, Bolzicco G, Collins S, et al. Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother Oncol. 2013;109(2):217–21. https://doi.org/10.1016/j.radonc.2013.08.030.

    Article  PubMed  Google Scholar 

  8. Kishan AU, Dang A, Katz AJ, Mantz CA, Collins SP, Aghdam N, et al. Long-term outcomes of stereotactic body radiotherapy for low-risk and intermediate-risk prostate cancer. JAMA Netw Open. 2019;2(2):e188006. https://doi.org/10.1001/jamanetworkopen.2018.8006.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, et al. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet. 1999;353(9149):267–72. https://doi.org/10.1016/s0140-6736(98)05180-0.

    Article  CAS  PubMed  Google Scholar 

  10. Halperin EC, Brady LW, Perez CA, Wazer DE. Perez & Brady's principles and practice of radiation oncology. Lippincott Williams & Wilkins; 2013.

  11. Al-Mamgani A, Heemsbergen WD, Peeters ST, Lebesque JV. Role of intensity-modulated radiotherapy in reducing toxicity in dose escalation for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2009;73(3):685–91. https://doi.org/10.1016/j.ijrobp.2008.04.063.

    Article  PubMed  Google Scholar 

  12. Sharma NK, Li T, Chen DY, Pollack A, Horwitz EM, Buyyounouski MK. Intensity-modulated radiotherapy reduces gastrointestinal toxicity in patients treated with androgen deprivation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2011;80(2):437–44. https://doi.org/10.1016/j.ijrobp.2010.02.040.

    Article  PubMed  Google Scholar 

  13. Vora SA, Wong WW, Schild SE, Ezzell GA, Halyard MY. Analysis of biochemical control and prognostic factors in patients treated with either low-dose three-dimensional conformal radiation therapy or high-dose intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2007;68(4):1053–8. https://doi.org/10.1016/j.ijrobp.2007.01.043.

    Article  CAS  PubMed  Google Scholar 

  14. Wortel RC, Incrocci L, Pos FJ, van der Heide UA, Lebesque JV, Aluwini S, et al. Late side effects after image guided intensity modulated radiation therapy compared to 3D-conformal radiation therapy for prostate cancer: Results from 2 prospective cohorts. Int J Radiat Oncol Biol Phys. 2016;95(2):680–9. https://doi.org/10.1016/j.ijrobp.2016.01.031.

    Article  PubMed  Google Scholar 

  15. Zelefsky MJ, Levin EJ, Hunt M, Yamada Y, Shippy AM, Jackson A, Amols HI. Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2008;70(4):1124–9. https://doi.org/10.1016/j.ijrobp.2007.11.044.

    Article  PubMed  Google Scholar 

  16. Kupelian PA, Langen KM, Willoughby TR, Zeidan OA, Meeks SL. Image-guided radiotherapy for localized prostate cancer: treating a moving target. Semin Radiat Oncol. 2008;18(1):58–66. https://doi.org/10.1016/j.semradonc.2007.09.008.

    Article  PubMed  Google Scholar 

  17. Morgan SC, Hoffman K, Loblaw DA, Buyyounouski MK, Patton C, Barocas D, et al. Hypofractionated radiation therapy for localized prostate cancer: An ASTRO, ASCO, and AUA evidence-based guideline. J Clin Oncol. 2018;36(34):Jco1801097. https://doi.org/10.1200/jco.18.01097.

    Article  CAS  PubMed  Google Scholar 

  18. Morgan SC, Hoffman K, Loblaw DA, Buyyounouski MK, Patton C, Barocas D, et al. Hypofractionated radiation therapy for localized prostate cancer: Executive summary of an ASTRO, ASCO and AUA evidence-based guideline. J Urol. 2019;201(3):528–34. https://doi.org/10.1097/ju.0000000000000071.

    Article  PubMed  Google Scholar 

  19. Ritter M. Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer. Semin Radiat Oncol. 2008;18(4):249–56. https://doi.org/10.1016/j.semradonc.2008.04.007.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Avkshtol V, Ruth KJ, Ross EA, Hallman MA, Greenberg RE, Price RA Jr, et al. Ten-year update of a randomized, prospective trial of conventional fractionated versus moderate hypofractionated radiation therapy for localized prostate cancer. J Clin Oncol. 2020;38(15):1676–84. https://doi.org/10.1200/jco.19.01485.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Catton CN, Lukka H, Gu CS, Martin JM, Supiot S, Chung PWM, et al. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. J Clin Oncol. 2017;35(17):1884–90. https://doi.org/10.1200/jco.2016.71.7397.

    Article  CAS  PubMed  Google Scholar 

  22. Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016;17(8):1047–60. https://doi.org/10.1016/s1470-2045(16)30102-4.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hickey BE, James ML, Daly T, Soh FY, Jeffery M. Hypofractionation for clinically localized prostate cancer. Cochrane Database Syst Rev. 2019;9(9):Cd011462. https://doi.org/10.1002/14651858.CD011462.pub2.

    Article  PubMed  Google Scholar 

  24. Incrocci L, Wortel RC, Alemayehu WG, Aluwini S, Schimmel E, Krol S, et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016;17(8):1061–9. https://doi.org/10.1016/s1470-2045(16)30070-5.

    Article  PubMed  Google Scholar 

  25. Hegde JV, Collins SP, Fuller DB, King CR, Demanes DJ, Wang PC, et al. A pooled analysis of biochemical failure in intermediate-risk prostate cancer following definitive stereotactic body radiotherapy (SBRT) or high-dose-rate brachytherapy (HDR-B) monotherapy. Am J Clin Oncol. 2018;41(5):502–7. https://doi.org/10.1097/coc.0000000000000311.

    Article  PubMed  Google Scholar 

  26. van As N, Tree A, Patel J, Ostler P, Van Der Voet H, Loblaw DA, et al. 5-year outcomes from PACE B: an international phase III randomized controlled trial comparing stereotactic body radiotherapy (SBRT) vs. conventionally fractionated or moderately hypo fractionated external beam radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2023;117(4):e2–3. https://doi.org/10.1016/j.ijrobp.2023.08.027. High level evidence describing efficacy and toxicity of SBRT for prostate cancer.

    Article  Google Scholar 

  27. Widmark A, Gunnlaugsson A, Beckman L, Thellenberg-Karlsson C, Hoyer M, Lagerlund M, et al. Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5-year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet. 2019;394(10196):385–95. https://doi.org/10.1016/s0140-6736(19)31131-6.

    Article  PubMed  Google Scholar 

  28. Ornelas VM. A Quantitative comparison of LINAC vs. cyberknife for SBRT prostate boost: a retrospective study (2022). Culminating Experience Projects. 174. 2022. p. https://scholarworks.gvsu.edu/gradprojects/174. Available from chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/ https://scholarworks.gvsu.edu/cgi/viewcontent.cgi?article=1184&context=gradprojects.

  29. Ito M, Yoshioka Y, Takase Y, Suzuki J, Takahashi H, Minami Y, et al. Stereotactic body radiation therapy for prostate cancer: a study comparing 3-year genitourinary toxicity between CyberKnife and volumetric-modulated arc therapy by propensity score analysis. Radiat Oncol. 2023;18(1):39. https://doi.org/10.1186/s13014-023-02233-4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stone NN, Potters L, Davis BJ, Ciezki JP, Zelefsky MJ, Roach M, et al. Customized dose prescription for permanent prostate brachytherapy: insights from a multicenter analysis of dosimetry outcomes. Int J Radiat Oncol Biol Phys. 2007;69(5):1472–7. https://doi.org/10.1016/j.ijrobp.2007.05.002.

    Article  PubMed  Google Scholar 

  31. Jawad MS, Dilworth JT, Gustafson GS, Ye H, Wallace M, Martinez A, et al. Outcomes associated with 3 treatment schedules of high-dose-rate brachytherapy monotherapy for favorable-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2016;94(4):657–66. https://doi.org/10.1016/j.ijrobp.2015.10.011.

    Article  PubMed  Google Scholar 

  32. Grimm P, Billiet I, Bostwick D, Dicker AP, Frank S, Immerzeel J, et al. Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU Int. 2012;109(Suppl 1):22–9. https://doi.org/10.1111/j.1464-410X.2011.10827.x.

    Article  PubMed  Google Scholar 

  33. Grimm PD, Blasko JC, Sylvester JE, Meier RM, Cavanagh W. 10-year biochemical (prostate-specific antigen) control of prostate cancer with (125)I brachytherapy. Int J Radiat Oncol Biol Phys. 2001;51(1):31–40. https://doi.org/10.1016/s0360-3016(01)01601-7.

    Article  CAS  PubMed  Google Scholar 

  34. Patel S, Demanes DJ, Ragab O, Zhang M, Veruttipong D, Nguyen K, et al. High-dose-rate brachytherapy monotherapy without androgen deprivation therapy for intermediate-risk prostate cancer. Brachytherapy. 2017;16(2):299–305. https://doi.org/10.1016/j.brachy.2016.11.002.

    Article  PubMed  Google Scholar 

  35. Potters L, Morgenstern C, Calugaru E, Fearn P, Jassal A, Presser J, Mullen E. 12-year outcomes following permanent prostate brachytherapy in patients with clinically localized prostate cancer. J Urol. 2005;173(5):1562–6. https://doi.org/10.1097/01.ju.0000154633.73092.8e.

    Article  PubMed  Google Scholar 

  36. Zelefsky MJ, Kuban DA, Levy LB, Potters L, Beyer DC, Blasko JC, et al. Multi-institutional analysis of long-term outcome for stages T1–T2 prostate cancer treated with permanent seed implantation. Int J Radiat Oncol Biol Phys. 2007;67(2):327–33. https://doi.org/10.1016/j.ijrobp.2006.08.056.

    Article  PubMed  Google Scholar 

  37. Goy BW, Burchette R, Soper MS, Chang T, Cosmatos HA. Ten-year treatment outcomes of radical prostatectomy vs external beam radiation therapy vs brachytherapy for 1503 patients with intermediate-risk prostate cancer. Urology. 2020;136:180–9. https://doi.org/10.1016/j.urology.2019.09.040.

    Article  PubMed  Google Scholar 

  38. Jabbari S, Weinberg VK, Shinohara K, Speight JL, Gottschalk AR, Hsu IC, et al. Equivalent biochemical control and improved prostate-specific antigen nadir after permanent prostate seed implant brachytherapy versus high-dose three-dimensional conformal radiotherapy and high-dose conformal proton beam radiotherapy boost. Int J Radiat Oncol Biol Phys. 2010;76(1):36–42. https://doi.org/10.1016/j.ijrobp.2009.01.029.

    Article  CAS  PubMed  Google Scholar 

  39. Pickles T, Keyes M, Morris WJ. Brachytherapy or conformal external radiotherapy for prostate cancer: a single-institution matched-pair analysis. Int J Radiat Oncol Biol Phys. 2010;76(1):43–9. https://doi.org/10.1016/j.ijrobp.2009.01.081.

    Article  PubMed  Google Scholar 

  40. Zelefsky MJ, Yamada Y, Pei X, Hunt M, Cohen G, Zhang Z, Zaider M. Comparison of tumor control and toxicity outcomes of high-dose intensity-modulated radiotherapy and brachytherapy for patients with favorable risk prostate cancer. Urology. 2011;77(4):986–90. https://doi.org/10.1016/j.urology.2010.07.539.

    Article  PubMed  Google Scholar 

  41. Sathya JR, Davis IR, Julian JA, Guo Q, Daya D, Dayes IS, et al. Randomized trial comparing iridium implant plus external-beam radiation therapy with external-beam radiation therapy alone in node-negative locally advanced cancer of the prostate. J Clin Oncol. 2005;23(6):1192–9. https://doi.org/10.1200/jco.2005.06.154.

    Article  PubMed  Google Scholar 

  42. Dayes IS, Parpia S, Gilbert J, Julian JA, Davis IR, Levine MN, Sathya J. Long-term results of a randomized trial comparing iridium implant plus external beam radiation therapy with external beam radiation therapy alone in node-negative locally advanced cancer of the prostate. Int J Radiat Oncol Biol Phys. 2017;99(1):90–3. https://doi.org/10.1016/j.ijrobp.2017.05.013.

    Article  PubMed  Google Scholar 

  43. Hoskin PJ, Rojas AM, Bownes PJ, Lowe GJ, Ostler PJ, Bryant L. Randomised trial of external beam radiotherapy alone or combined with high-dose-rate brachytherapy boost for localised prostate cancer. Radiother Oncol. 2012;103(2):217–22. https://doi.org/10.1016/j.radonc.2012.01.007.

    Article  PubMed  Google Scholar 

  44. Morris WJ, Tyldesley S, Rodda S, Halperin R, Pai H, McKenzie M, et al. Androgen suppression combined with elective nodal and dose escalated radiation therapy (the ASCENDE-RT Trial): an analysis of survival endpoints for a randomized trial comparing a low-dose-rate brachytherapy boost to a dose-escalated external beam boost for high- and intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2017;98(2):275–85. https://doi.org/10.1016/j.ijrobp.2016.11.026.

    Article  PubMed  Google Scholar 

  45. Prestidge B, Winter K, Sanda MG, Amin M, Bice W, Michalski J, et al. Initial report of NRG oncology/RTOG 0232: a phase 3 study comparing combined external beam radiation and transperineal interstitial permanent brachytherapy with brachytherapy alone for selected patients with intermediate-risk prostatic carcinoma. Int J Radiat Oncol Biol Phys. 2016;96:S4. https://doi.org/10.1016/j.ijrobp.2016.06.026.

    Article  Google Scholar 

  46. Kishan AU, Cook RR, Ciezki JP, Ross AE, Pomerantz MM, Nguyen PL, et al. Radical prostatectomy, external beam radiotherapy, or external beam radiotherapy with brachytherapy boost and disease progression and mortality in patients with gleason score 9–10 prostate cancer. JAMA. 2018;319(9):896–905. https://doi.org/10.1001/jama.2018.0587.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Spina CS. Androgen deprivation therapy and radiation therapy for prostate cancer: the mechanism underlying therapeutic synergy. Transl Cancer Res. 2018:S695–S703. Available from https://tcr.amegroups.org/article/view/22080.

  48. Jones CU, Hunt D, McGowan DG, Amin MB, Chetner MP, Bruner DW, et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med. 2011;365(2):107–18. https://doi.org/10.1056/NEJMoa1012348.

    Article  CAS  PubMed  Google Scholar 

  49. Lawton CA, DeSilvio M, Roach M 3rd, Uhl V, Kirsch R, Seider M, et al. An update of the phase III trial comparing whole pelvic to prostate only radiotherapy and neoadjuvant to adjuvant total androgen suppression: updated analysis of RTOG 94–13, with emphasis on unexpected hormone/radiation interactions. Int J Radiat Oncol Biol Phys. 2007;69(3):646–55. https://doi.org/10.1016/j.ijrobp.2007.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bolla M, de Reijke TM, Van Tienhoven G, Van den Bergh AC, Oddens J, Poortmans PM, et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med. 2009;360(24):2516–27. https://doi.org/10.1056/NEJMoa0810095.

    Article  CAS  PubMed  Google Scholar 

  51. Fosså SD, Wiklund F, Klepp O, Angelsen A, Solberg A, Damber JE, et al. Ten- and 15-yr prostate cancer-specific mortality in patients with nonmetastatic locally advanced or aggressive intermediate prostate cancer, randomized to lifelong endocrine treatment alone or combined with radiotherapy: final results of the scandinavian prostate cancer group-7. Eur Urol. 2016;70(4):684–91. https://doi.org/10.1016/j.eururo.2016.03.021.

    Article  PubMed  Google Scholar 

  52. Horwitz EM, Bae K, Hanks GE, Porter A, Grignon DJ, Brereton HD, et al. Ten-year follow-up of radiation therapy oncology group protocol 92–02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol. 2008;26(15):2497–504. https://doi.org/10.1200/jco.2007.14.9021.

    Article  CAS  PubMed  Google Scholar 

  53. Mason MD, Parulekar WR, Sydes MR, Brundage M, Kirkbride P, Gospodarowicz M, et al. Final report of the intergroup randomized study of combined androgen-deprivation therapy plus radiotherapy versus androgen-deprivation therapy alone in locally advanced prostate cancer. J Clin Oncol. 2015;33(19):2143–50. https://doi.org/10.1200/jco.2014.57.7510.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pilepich MV, Winter K, Lawton CA, Krisch RE, Wolkov HB, Movsas B, et al. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma–long-term results of phase III RTOG 85–31. Int J Radiat Oncol Biol Phys. 2005;61(5):1285–90. https://doi.org/10.1016/j.ijrobp.2004.08.047.

    Article  CAS  PubMed  Google Scholar 

  55. Warde P, Mason M, Ding K, Kirkbride P, Brundage M, Cowan R, et al. Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet. 2011;378(9809):2104–11. https://doi.org/10.1016/s0140-6736(11)61095-7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Widmark A, Klepp O, Solberg A, Damber JE, Angelsen A, Fransson P, et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet. 2009;373(9660):301–8. https://doi.org/10.1016/s0140-6736(08)61815-2.

    Article  CAS  PubMed  Google Scholar 

  57. James ND, de Bono JS, Spears MR, Clarke NW, Mason MD, Dearnaley DP, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017;377(4):338–51. https://doi.org/10.1056/NEJMoa1702900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. D’Amico AV, Chen MH, Crook J, Armstrong JG, Malone S, Steigler A, et al. Duration of short-course androgen suppression therapy and the risk of death as a result of prostate cancer. J Clin Oncol. 2011;29(35):4682–7. https://doi.org/10.1200/jco.2011.37.0726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spratt DE, Yousefi K, Deheshi S, Ross AE, Den RB, Schaeffer EM, et al. Individual patient-level meta-analysis of the performance of the decipher genomic classifier in high-risk men after prostatectomy to predict development of metastatic disease. J Clin Oncol. 2017;35(18):1991–8. https://doi.org/10.1200/JCO.2016.70.2811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. NIH National Library of Medicine NCfBI. Two studies for patients with high risk prostate cancer testing less intense treatment for patients with a low gene risk score and testing a more intense treatment for patients with a high gene risk score, The PREDICT-RT Trial. Last Update Posted 2023-09-21. Available from https://clinicaltrials.gov/study/NCT04513717.

  61. NIH National Library of Medicine NCfBI. Two studies for patients with unfavorable intermediate risk prostate cancer testing less intense treatment for patients with a low gene risk score and testing a more intense treatment for patients with a higher gene risk score. Last Update Posted 2023-09-21. Available from https://clinicaltrials.gov/study/NCT05050084.

  62. Ahdoot M, Wilbur AR, Reese SE, Lebastchi AH, Mehralivand S, Gomella PT, et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N Engl J Med. 2020;382(10):917–28. https://doi.org/10.1056/NEJMoa1910038.

    Article  PubMed  PubMed Central  Google Scholar 

  63. de Rooij M, Hamoen EH, Witjes JA, Barentsz JO, Rovers MM. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol. 2016;70(2):233–45. https://doi.org/10.1016/j.eururo.2015.07.029.

    Article  PubMed  Google Scholar 

  64. Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med. 2018;378(19):1767–77. https://doi.org/10.1056/NEJMoa1801993.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mason BR, Eastham JA, Davis BJ, Mynderse LA, Pugh TJ, Lee RJ, Ippolito JE. Current status of MRI and PET in the NCCN guidelines for prostate cancer. J Natl Compr Canc Netw. 2019;17(5):506–13. https://doi.org/10.6004/jnccn.2019.7306.

    Article  CAS  PubMed  Google Scholar 

  66. Siddiqui MM, Rais-Bahrami S, Truong H, Stamatakis L, Vourganti S, Nix J, et al. Magnetic resonance imaging/ultrasound-fusion biopsy significantly upgrades prostate cancer versus systematic 12-core transrectal ultrasound biopsy. Eur Urol. 2013;64(5):713–9. https://doi.org/10.1016/j.eururo.2013.05.059.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kerkmeijer LGW, Groen VH, Pos FJ, Haustermans K, Monninkhof EM, Smeenk RJ, et al. Focal boost to the intraprostatic tumor in external beam radiotherapy for patients with localized prostate cancer: Results from the FLAME randomized phase III trial. J Clin Oncol. 2021;39(7):787–96. https://doi.org/10.1200/jco.20.02873. This publication provides high level evidence for an integrated microboost within a radiotherapy treatment plan to improve outcomes.

    Article  CAS  PubMed  Google Scholar 

  68. Hofman MS, Murphy DG, Williams SG, Nzenza T, Herschtal A, Lourenco RA, et al. A prospective randomized multicentre study of the impact of gallium-68 prostate-specific membrane antigen (PSMA) PET/CT imaging for staging high-risk prostate cancer prior to curative-intent surgery or radiotherapy (proPSMA study): clinical trial protocol. BJU Int. 2018;122(5):783–93. https://doi.org/10.1111/bju.14374.

    Article  CAS  PubMed  Google Scholar 

  69. Hope TA, Eiber M, Armstrong WR, Juarez R, Murthy V, Lawhn-Heath C, et al. Diagnostic accuracy of 68Ga-PSMA-11 PET for pelvic nodal metastasis detection prior to radical prostatectomy and pelvic lymph node dissection: a multicenter prospective phase 3 imaging trial. JAMA Oncol. 2021;7(11):1635–42. https://doi.org/10.1001/jamaoncol.2021.3771.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Allen AM, Pawlicki T, Dong L, Fourkal E, Buyyounouski M, Cengel K, et al. An evidence based review of proton beam therapy: the report of ASTRO’s emerging technology committee. Radiother Oncol. 2012;103(1):8–11. https://doi.org/10.1016/j.radonc.2012.02.001.

    Article  PubMed  Google Scholar 

  71. Coen JJ, Zietman AL, Rossi CJ, Grocela JA, Efstathiou JA, Yan Y, Shipley WU. Comparison of high-dose proton radiotherapy and brachytherapy in localized prostate cancer: a case-matched analysis. Int J Radiat Oncol Biol Phys. 2012;82(1):e25-31. https://doi.org/10.1016/j.ijrobp.2011.01.039.

    Article  PubMed  Google Scholar 

  72. Yu JB, Soulos PR, Herrin J, Cramer LD, Potosky AL, Roberts KB, Gross CP. Proton versus intensity-modulated radiotherapy for prostate cancer: patterns of care and early toxicity. J Natl Cancer Inst. 2013;105(1):25–32. https://doi.org/10.1093/jnci/djs463.

    Article  CAS  PubMed  Google Scholar 

  73. Bekelman JE, Rumble RB, Chen RC, Pisansky TM, Finelli A, Feifer A, et al. Clinically Localized Prostate Cancer: ASCO Clinical Practice Guideline Endorsement of an American Urological Association/American Society for Radiation Oncology/Society of Urologic Oncology Guideline. J Clin Oncol. 2018;36(32):3251–8. https://doi.org/10.1200/jco.18.00606.

    Article  PubMed  Google Scholar 

  74. Eastham JA, Auffenberg GB, Barocas DA, Chou R, Crispino T, Davis JW, et al. Clinically localized prostate cancer: AUA/ASTRO guideline. Part III: Principles of radiation and future directions. J Urol. 2022;208(1):26–33. https://doi.org/10.1097/ju.0000000000002759. These AUA/ASTRO consensus guidelines provide an excellent summary of current management of prostate cancer.

    Article  PubMed  Google Scholar 

  75. Wisdom AJ, Yeap BY, Michalski JM, Zietman AL, Baumann BC, Christodouleas JP, et al. Prostate advanced radiation technologies investigating quality of life (PARTIQoL): a phase III randomized clinical trial of proton therapy vs. IMRT for low or intermediate risk prostate cancer. Int J Radiat Oncol Biol Phys. 2023;117(2, Supplement):e450. https://doi.org/10.1016/j.ijrobp.2023.06.1635.

    Article  Google Scholar 

  76. Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, Beyer D, et al. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: Dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2015;92(5):971–7. https://doi.org/10.1016/j.ijrobp.2015.04.030.

    Article  PubMed  Google Scholar 

  77. Miller LE, Efstathiou JA, Bhattacharyya SK, Payne HA, Woodward E, Pinkawa M. Association of the placement of a perirectal hydrogel spacer with the clinical outcomes of men receiving radiotherapy for prostate cancer: a systematic review and meta-analysis. JAMA Netw Open. 2020;3(6):e208221. https://doi.org/10.1001/jamanetworkopen.2020.8221.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hamstra DA, Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, et al. Continued benefit to rectal separation for prostate radiation therapy: Final results of a phase III trial. Int J Radiat Oncol Biol Phys. 2017;97(5):976–85. https://doi.org/10.1016/j.ijrobp.2016.12.024.

    Article  PubMed  Google Scholar 

  79. Aminsharifi A, Kotamarti S, Silver D, Schulman A. Major complications and adverse events related to the injection of the SpaceOAR hydrogel system before radiotherapy for prostate cancer: Review of the manufacturer and user facility device experience database. J Endourol. 2019;33(10):868–71. https://doi.org/10.1089/end.2019.0431.

    Article  PubMed  Google Scholar 

  80. Levy JF, Khairnar R, Louie AV, Showalter TN, Mullins CD, Mishra MV. Evaluating the cost-effectiveness of hydrogel rectal spacer in prostate cancer radiation therapy. Pract Radiat Oncol. 2019;9(2):e172–9. https://doi.org/10.1016/j.prro.2018.10.003.

    Article  PubMed  Google Scholar 

  81. Schörghofer A, Drerup M, Kunit T, Lusuardi L, Holzinger J, Karner J, et al. Rectum-spacer related acute toxicity - endoscopy results of 403 prostate cancer patients after implantation of gel or balloon spacers. Radiat Oncol. 2019;14(1):47. https://doi.org/10.1186/s13014-019-1248-6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hamdy FC, Donovan JL, Lane JA, Mason M, Metcalfe C, Holding P, et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med. 2016;375(15):1415–24. https://doi.org/10.1056/NEJMoa1606220.

    Article  PubMed  Google Scholar 

  83. Alibhai SM, Leach M, Tomlinson G, Krahn MD, Fleshner N, Holowaty E, Naglie G. 30-day mortality and major complications after radical prostatectomy: influence of age and comorbidity. J Natl Cancer Inst. 2005;97(20):1525–32. https://doi.org/10.1093/jnci/dji313.

    Article  PubMed  Google Scholar 

  84. Chang P, Wagner AA, Regan MM, Smith JA, Saigal CS, Litwin MS, et al. Prospective multicenter comparison of open and robotic radical prostatectomy: The PROST-QA/RP2 consortium. J Urol. 2022;207(1):127–36. https://doi.org/10.1097/ju.0000000000002176.

    Article  PubMed  Google Scholar 

  85. Van Hemelrijck M, Garmo H, Holmberg L, Bill-Axelson A, Carlsson S, Akre O, et al. Thromboembolic events following surgery for prostate cancer. Eur Urol. 2013;63(2):354–63. https://doi.org/10.1016/j.eururo.2012.09.041.

    Article  PubMed  Google Scholar 

  86. Al Awamlh BAH, Wallis CJD, Penson DF, Huang L-C, Zhao Z, Conwill R, et al. Functional outcomes after localized prostate cancer treatment. JAMA. 2024;331(4):302–17. https://doi.org/10.1001/jama.2023.26491.

    Article  Google Scholar 

  87. Alemozaffar M, Regan MM, Cooperberg MR, Wei JT, Michalski JM, Sandler HM, et al. Prediction of erectile function following treatment for prostate cancer. JAMA. 2011;306(11):1205–14. https://doi.org/10.1001/jama.2011.1333.

    Article  CAS  PubMed  Google Scholar 

  88. Chen RC, Basak R, Meyer AM, Kuo TM, Carpenter WR, Agans RP, et al. Association between choice of radical prostatectomy, external beam radiotherapy, brachytherapy, or active surveillance and patient-reported quality of life among men with localized prostate cancer. JAMA. 2017;317(11):1141–50. https://doi.org/10.1001/jama.2017.1652.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Donovan JL, Hamdy FC, Lane JA, Mason M, Metcalfe C, Walsh E, et al. Patient-reported outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N Engl J Med. 2016;375(15):1425–37. https://doi.org/10.1056/NEJMoa1606221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hoffman KE, Penson DF, Zhao Z, Huang LC, Conwill R, Laviana AA, et al. Patient-reported outcomes through 5 years for active surveillance, surgery, brachytherapy, or external beam radiation with or without androgen deprivation therapy for localized prostate cancer. JAMA. 2020;323(2):149–63. https://doi.org/10.1001/jama.2019.20675.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Resnick MJ, Koyama T, Fan KH, Albertsen PC, Goodman M, Hamilton AS, et al. Long-term functional outcomes after treatment for localized prostate cancer. N Engl J Med. 2013;368(5):436–45. https://doi.org/10.1056/NEJMoa1209978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sanda MG, Dunn RL, Michalski J, Sandler HM, Northouse L, Hembroff L, et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N Engl J Med. 2008;358(12):1250–61. https://doi.org/10.1056/NEJMoa074311.

    Article  CAS  PubMed  Google Scholar 

  93. Keyes M, Miller S, Moravan V, Pickles T, McKenzie M, Pai H, et al. Predictive factors for acute and late urinary toxicity after permanent prostate brachytherapy: long-term outcome in 712 consecutive patients. Int J Radiat Oncol Biol Phys. 2009;73(4):1023–32. https://doi.org/10.1016/j.ijrobp.2008.05.022.

    Article  PubMed  Google Scholar 

  94. Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC, Partin AW. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA. 2005;294(4):433–9. https://doi.org/10.1001/jama.294.4.433.

    Article  CAS  PubMed  Google Scholar 

  95. Roehl KA, Han M, Ramos CG, Antenor JA, Catalona WJ. Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. J Urol. 2004;172(3):910–4. https://doi.org/10.1097/01.ju.0000134888.22332.bb.

    Article  PubMed  Google Scholar 

  96. Stephenson AJ, Kattan MW, Eastham JA, Dotan ZA, Bianco FJ Jr, Lilja H, Scardino PT. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J Clin Oncol. 2006;24(24):3973–8. https://doi.org/10.1200/jco.2005.04.0756.

    Article  CAS  PubMed  Google Scholar 

  97. Bolla M, van Poppel H, Tombal B, Vekemans K, Da Pozzo L, de Reijke TM, et al. Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet. 2012;380(9858):2018–27. https://doi.org/10.1016/s0140-6736(12)61253-7.

    Article  PubMed  Google Scholar 

  98. Thompson IM, Tangen CM, Paradelo J, Lucia MS, Miller G, Troyer D, et al. Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J Urol. 2009;181(3):956–62. https://doi.org/10.1016/j.juro.2008.11.032.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wiegel T, Bottke D, Steiner U, Siegmann A, Golz R, Störkel S, et al. Phase III postoperative adjuvant radiotherapy after radical prostatectomy compared with radical prostatectomy alone in pT3 prostate cancer with postoperative undetectable prostate-specific antigen: ARO 96–02/AUO AP 09/95. J Clin Oncol. 2009;27(18):2924–30. https://doi.org/10.1200/jco.2008.18.9563.

    Article  PubMed  Google Scholar 

  100. Kneebone A, Fraser-Browne C, Duchesne GM, Fisher R, Frydenberg M, Herschtal A, et al. Adjuvant radiotherapy versus early salvage radiotherapy following radical prostatectomy (TROG 08.03/ANZUP RAVES): a randomised, controlled, phase 3, non-inferiority trial. Lancet Oncol. 2020;21(10):1331–40. https://doi.org/10.1016/s1470-2045(20)30456-3.

    Article  CAS  PubMed  Google Scholar 

  101. Sargos P, Chabaud S, Latorzeff I, Magné N, Benyoucef A, Supiot S, et al. Adjuvant radiotherapy versus early salvage radiotherapy plus short-term androgen deprivation therapy in men with localised prostate cancer after radical prostatectomy (GETUG-AFU 17): a randomised, phase 3 trial. Lancet Oncol. 2020;21(10):1341–52. https://doi.org/10.1016/s1470-2045(20)30454-x.

    Article  CAS  PubMed  Google Scholar 

  102. Vale CL, Fisher D, Kneebone A, Parker C, Pearse M, Richaud P, et al. Adjuvant or early salvage radiotherapy for the treatment of localised and locally advanced prostate cancer: a prospectively planned systematic review and meta-analysis of aggregate data. Lancet. 2020;396(10260):1422–31. https://doi.org/10.1016/s0140-6736(20)31952-8. Evidence supporting early salvage rather than adjuvant RT for most patients with biochemical recurrence after radical prostatectomy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jairath NK, Dal Pra A, Vince R Jr, Dess RT, Jackson WC, Tosoian JJ, et al. A systematic review of the evidence for the decipher genomic classifier in prostate cancer. Eur Urol. 2021;79(3):374–83. https://doi.org/10.1016/j.eururo.2020.11.021.

    Article  CAS  PubMed  Google Scholar 

  104. Zhao SG, Chang SL, Spratt DE, Erho N, Yu M, Ashab HA, et al. Development and validation of a 24-gene predictor of response to postoperative radiotherapy in prostate cancer: a matched, retrospective analysis. Lancet Oncol. 2016;17(11):1612–20. https://doi.org/10.1016/s1470-2045(16)30491-0.

    Article  PubMed  Google Scholar 

  105. Moinpour CM, Hayden KA, Unger JM, Thompson IM Jr, Redman MW, Canby-Hagino ED, et al. Health-related quality of life results in pathologic stage C prostate cancer from a Southwest Oncology Group trial comparing radical prostatectomy alone with radical prostatectomy plus radiation therapy. J Clin Oncol. 2008;26(1):112–20. https://doi.org/10.1200/jco.2006.10.4505.

    Article  PubMed  Google Scholar 

  106. Dess RT, Sun Y, Jackson WC, Jairath NK, Kishan AU, Wallington DG, et al. Association of presalvage radiotherapy psa levels after prostatectomy with outcomes of long-term antiandrogen therapy in men with prostate cancer. JAMA Oncol. 2020;6(5):735–43. https://doi.org/10.1001/jamaoncol.2020.0109.

    Article  PubMed  Google Scholar 

  107. Stephenson AJ, Scardino PT, Kattan MW, Pisansky TM, Slawin KM, Klein EA, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007;25(15):2035–41. https://doi.org/10.1200/jco.2006.08.9607.

    Article  PubMed  Google Scholar 

  108. Tendulkar RD, Agrawal S, Gao T, Efstathiou JA, Pisansky TM, Michalski JM, et al. Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. J Clin Oncol. 2016;34(30):3648–54. https://doi.org/10.1200/jco.2016.67.9647.

    Article  PubMed  Google Scholar 

  109. Trock BJ, Han M, Freedland SJ, Humphreys EB, DeWeese TL, Partin AW, Walsh PC. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA. 2008;299(23):2760–9. https://doi.org/10.1001/jama.299.23.2760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pollack A, Karrison TG, Balogh AG, Low D, Bruner DW, Wefel JS, et al. Short term androgen deprivation therapy without or with pelvic lymph node treatment added to prostate bed only salvage radiotherapy: The NRG oncology/RTOG 0534 SPPORT trial. Int J Radiat Oncol Biol Phys. 2018;102(5):1605. https://doi.org/10.1016/j.ijrobp.2018.08.052.

    Article  Google Scholar 

  111. Shipley WU, Seiferheld W, Lukka HR, Major PP, Heney NM, Grignon DJ, et al. Radiation with or without antiandrogen therapy in recurrent prostate cancer. N Engl J Med. 2017;376(5):417–28. https://doi.org/10.1056/NEJMoa1607529.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Spratt DE. Evidence-based risk stratification to guide hormone therapy use with salvage radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2018;102(3):556–60. https://doi.org/10.1016/j.ijrobp.2018.06.037.

    Article  PubMed  Google Scholar 

  113. Buyyounouski MK, Pugh S, Chen RC, Mann M, Kudchadker R, Konski AA, et al. Primary endpoint analysis of a randomized phase III trial of hypofractionated vs. conventional post-prostatectomy radiotherapy: NRG oncology GU003. Int J Radiat Oncol Biol Phys. 2021;111(3, Supplement):S2–3. https://doi.org/10.1016/j.ijrobp.2021.07.041.

    Article  Google Scholar 

  114. NIH National Library of Medicine NCfBI. Biomarker trial of apalutamide and radiation for recurrent prostate cancer (balance). ClinicalTrials.gov. National Library of Medicine.; Last Update Posted 2023-03-28. Available from https://clinicaltrials.gov/study/NCT03371719.

  115. NIH National Library of Medicine NCfBI. Antiandrogen therapy and radiation therapy with or without docetaxel in treating patients with prostate cancer that has been removed by surgery. NCT03070886Last Update Posted 2023-03-28. Available from https://clinicaltrials.gov/study/NCT03070886?term=NCT03070886&rank=1.

  116. NIH National Library of Medicine NCfBI. Testing the addition of the drug apalutamide to the usual hormone therapy and radiation therapy after surgery for prostate cancer. NCT04134260Last Update Posted 2023-09-21. Available from https://clinicaltrials.gov/study/NCT04134260?term=NCT04134260&rank=1.

  117. Calais J, Ceci F, Eiber M, Hope TA, Hofman MS, Rischpler C, et al. (18)F-fluciclovine PET-CT and (68)Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 2019;20(9):1286–94. https://doi.org/10.1016/s1470-2045(19)30415-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Beheshti M, Manafi-Farid R, Geinitz H, Vali R, Loidl W, Mottaghy FM, Langsteger W. Multiphasic 68Ga-PSMA PET/CT in the detection of early recurrence in prostate cancer patients with a PSA level of less than 1 ng/mL: a prospective study of 135 patients. J Nucl Med. 2020;61(10):1484–90. https://doi.org/10.2967/jnumed.119.238071.

    Article  CAS  PubMed  Google Scholar 

  119. Hoffmann MA, Buchholz HG, Wieler HJ, Miederer M, Rosar F, Fischer N, et al. PSA and PSA kinetics thresholds for the presence of (68)Ga-PSMA-11 PET/CT-detectable lesions in patients with biochemical recurrent prostate cancer. Cancers (Basel). 2020;12(2). https://doi.org/10.3390/cancers12020398.

  120. Ashby M. The role of radiotherapy in palliative care. J Pain Symptom Manag. 1991;6(6):380–8. https://doi.org/10.1016/0885-3924(91)90030-8.

    Article  CAS  Google Scholar 

  121. Jones JA, Lutz ST, Chow E, Johnstone PA. Palliative radiotherapy at the end of life: a critical review. CA: Cancer J Clin. 2014;64(5):295–310–10. https://doi.org/10.3322/caac.21242.

    Article  Google Scholar 

  122. Lutz S, Korytko T, Nguyen J, Khan L, Chow E, Corn B. Palliative radiotherapy: When is it worth it and when is it not? Cancer J. 2010;16(5):473–82. https://doi.org/10.1097/PPO.0b013e3181f28b4d.

    Article  PubMed  Google Scholar 

  123. Chang S, May P, Goldstein NE, Wisnivesky J, Ricks D, Fuld D, et al. A palliative radiation oncology consult service reduces total costs during hospitalization. J Pain Symptom Manag. 2018;55(6):1452–8. https://doi.org/10.1016/j.jpainsymman.2018.03.005.

    Article  Google Scholar 

  124. Francis SR, Orton A, Thorpe C, Stoddard G, Lloyd S, Anker CJ. Toxicity and outcomes in patients with and without esophageal stents in locally advanced esophageal cancer. Int J Radiat Oncol Biol Phys. 2017;99(4):884–94.

    Article  PubMed  Google Scholar 

  125. Leighl NB, Nirmalakumar S, Ezeife DA, Gyawali B. An arm and a leg: the rising cost of cancer drugs and impact on access. Am Soc Clin Oncol Educ Book. 2021;41:1–12. https://doi.org/10.1200/edbk_100028.

    Article  PubMed  Google Scholar 

  126. Moeller B, Balagamwala EH, Chen A, Creach KM, Giaccone G, Koshy M, et al. Palliative thoracic radiation therapy for non-small cell lung cancer: 2018 Update of an American Society for Radiation Oncology (ASTRO) Evidence-Based Guideline. Pract Radiat Oncol. 2018;8(4):245–50.

    Article  PubMed  Google Scholar 

  127. Roemer M. Cancer-related hospitalizations for adults, 2017. 2021. In: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2006 Feb. Statistical Brief #270. 2021 Jan 26.

  128. Tsao MN, Rades D, Wirth A, Lo SS, Danielson BL, Gaspar LE, et al. Radiotherapeutic and surgical management for newly diagnosed brain metastasis (es): An American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol. 2012;2(3):210–25.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gillespie EF, Yang JC, Mathis NJ, Marine CB, White C, Zhang Z, et al. Prophylactic radiation therapy versus standard of care for patients with high-risk asymptomatic bone metastases: a multicenter, randomized phase II clinical trial. J Clin Oncol. 2024;42(1):38–46. Supports greater use of prophylactic radiation to prevent skeletal events for high risk bone metastases.

    Article  CAS  PubMed  Google Scholar 

  130. Gorman D, Balboni T, Taylor A, Krishnan M. The supportive and palliative radiation oncology service: a dedicated model for palliative radiation oncology care. J Adv Pract Oncol. 2015;6(2):135.

    PubMed  PubMed Central  Google Scholar 

  131. Johnstone C. Palliative radiation oncology programs: design, build, succeed! Ann Palliat Med. 2019;8(3):264–73.

    Article  PubMed  Google Scholar 

  132. Tseng YD, Krishnan MS, Jones JA, Sullivan AJ, Gorman D, Taylor A, et al. Supportive and palliative radiation oncology service: Impact of a dedicated service on palliative cancer care. Pract Radiat Oncol. 2014;4(4):247–53.

    Article  PubMed  Google Scholar 

  133. Ottaiano A, Santorsola M, Circelli L, Trotta AM, Izzo F, Perri F, et al. Oligo-metastatic cancers: putative biomarkers, emerging challenges and new perspectives. Cancers (Basel). 2023;15(6). https://doi.org/10.3390/cancers15061827.

  134. Parker CC, James ND, Brawley CD, Clarke NW, Hoyle AP, Ali A, et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet. 2018;392(10162):2353–66. https://doi.org/10.1016/s0140-6736(18)32486-3.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ali A, Hoyle A, Haran ÁM, Brawley CD, Cook A, Amos C, et al. Association of bone metastatic burden with survival benefit from prostate radiotherapy in patients with newly diagnosed metastatic prostate cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2021;7(4):555–63. https://doi.org/10.1001/jamaoncol.2020.7857.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Boevé LM, Hulshof MC, Vis AN, Zwinderman AH, Twisk JW, Witjes WP, et al. Effect on survival of androgen deprivation therapy alone compared to androgen deprivation therapy combined with concurrent radiation therapy to the prostate in patients with primary bone metastatic prostate cancer in a prospective randomised clinical trial: data from the HORRAD trial. Eur Urol. 2019;75(3):410–8.

    Article  PubMed  Google Scholar 

  137. Burdett S, Boevé LM, Ingleby FC, Fisher DJ, Rydzewska LH, Vale CL, et al. Prostate radiotherapy for metastatic hormone-sensitive prostate cancer: a STOPCAP systematic review and meta-analysis. Eur Urol. 2019;76(1):115–24. https://doi.org/10.1016/j.eururo.2019.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020;395(10231):1208–16. https://doi.org/10.1016/s0140-6736(20)30314-7.

    Article  CAS  PubMed  Google Scholar 

  139. Ost P, Reynders D, Decaestecker K, Fonteyne V, Lumen N, De Bruycker A, et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence (STOMP): Five-year results of a randomized phase II trial. Am Soc Clin Oncol. 2020.

  140. Phillips R, Shi WY, Deek M, Radwan N, Lim SJ, Antonarakis ES, et al. Outcomes of observation vs stereotactic ablative radiation for oligometastatic prostate cancer: The ORIOLE phase 2 randomized clinical trial. JAMA Oncol. 2020;6(5):650–9. https://doi.org/10.1001/jamaoncol.2020.0147.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tang C, Sherry AD, Haymaker C, Bathala T, Liu S, Fellman B, et al. Addition of metastasis-directed therapy to intermittent hormone therapy for oligometastatic prostate cancer: The EXTEND phase 2 randomized clinical trial. JAMA Oncol. 2023;9(6):825–34. https://doi.org/10.1001/jamaoncol.2023.0161. Supports metastasis-directed therapy for oligometa static prostate cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Francolini G, Allegra AG, Detti B, Di Cataldo V, Caini S, Bruni A, et al. Stereotactic body radiation therapy and abiraterone acetate for patients affected by oligometastatic castrate-resistant prostate cancer: a randomized phase II trial (ARTO). J Clin Oncol. 2023;41(36):5561–8. https://doi.org/10.1200/jco.23.00985. Supports metastasis-directed therapy for oligometastatic prostate cancer.

    Article  CAS  PubMed  Google Scholar 

  143. Viani GA, Arruda CV, Hamamura AC, Faustino AC, Danelichen AFB, Guimarães FS. Stereotactic Body Radiotherapy for Oligometastatic Prostate Cancer Recurrence: A Meta-analysis. Am J Clin Oncol. 2020;43(2):73–81. https://doi.org/10.1097/coc.0000000000000635.

    Article  PubMed  Google Scholar 

  144. NIH National Library of Medicine NCfBI. Prostate-cancer treatment using stereotactic radiotherapy for oligometastases ablation in hormone-sensitive patients (PRESTO). NCT04115007 Last Update Posted 2023-02-17. Available from https://clinicaltrials.gov/study/NCT04115007.

  145. NIH National Library of Medicine NCfBI. Apalutamide with or without stereotactic body radiation therapy in treating participants with castration-resistant prostate cancer (PILLAR) (PILLAR). Last Update Posted 2023-05-24. Available from https://clinicaltrials.gov/study/NCT03503344.

  146. NIH National Library of Medicine NCfBI. Stereotactic ablative radiotherapy for comprehensive treatment of oligometastatic (1-3 metastases) cancer (SABR-COMET-3). Last Update Posted 2023-06-15. Available from https://clinicaltrials.gov/study/NCT03862911.

  147. NIH National Library of Medicine NCfBI. Testing the addition of the drug relugolix to the usual radiation therapy for advanced-stage prostate cancer (NRG PROMETHEAN). Last Update Posted 2023-09-21. Available from https://clinicaltrials.gov/study/NCT05053152.

  148. NIH National Library of Medicine NCfBI. Local ablative therapy for hormone sensitive oligometastatic prostate cancer (PLATON). Last Update Posted 2023-09-13. Available from https://clinicaltrials.gov/study/NCT03784755.

Download references

Author information

Authors and Affiliations

Authors

Contributions

MM performed all aspects of the manuscript preparation.

Corresponding author

Correspondence to Malcolm D. Mattes.

Ethics declarations

Conflict of Interest

The author has relevant conflicts of interest to disclose.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattes, M.D. Overview of Radiation Therapy in the Management of Localized and Metastatic Prostate Cancer. Curr Urol Rep 25, 181–192 (2024). https://doi.org/10.1007/s11934-024-01217-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-024-01217-5

Keywords

Navigation