Abstract
Although creativity is often viewed as being associated with the notions of “genius” or exceptional ability, it can be productive for mathematics educators to view creativity instead as an orientation or disposition toward mathematical activity that can be fostered broadly in the general school population. In this article, it is argued that inquiry-oriented mathematics instruction which includes problem-solving and problem-posing tasks and activities can assist students to develop more creative approaches to mathematics. Through the use of such tasks and activities, teachers can increase their students’ capacity with respect to the core dimensions of creativity, namely, fluency, flexibility, and novelty. Because the instructional techniques discussed in this article have been used successfully with students all over the world, there is little reason to believe that creativity-enriched mathematics instruction cannot be used with a broad range of students in order to increase their representational and strategic fluency and flexibility, and their appreciation for novel problems, solution methods, or solutions.
Kurzreferat
Kreativität wird oft im Zusammenhang gesehen mit Begriffen wie “Genie” oder außergewöhnliche Fähigkeiten. Demgegenüber kann es für Mathematiklehrer jedoch produktiver sein. Kreativität als Orientierung für mathematische Aktivitäten zu nehmen, die auf diese Weise bei der Allgemeinheit der Schüler breit gefördert werden kann. In diesem Beitrag wird gezeigt, daß forschender Mathematikunterricht, der Aufgaben zum Problemlösen und zum Aufgabenerfinden beinhaltet, Schüler dabei unterstützen kann, mehr kreative Zugänge zur Mathematik zu entwickeln. Durch solche Aktivitäten und Aufgaben kann der Lehrer die Fähigkeiten seiner Schüler im Hinblick auf die Kernaspekte von Kreativität erweitern, nämlich Gewandtheit, Flexibilität und Neues. Die hier diskutierten Unterrichtsmethoden wurden weltweit erfolgreich angewendet, so daß es keinen Grund gibt, daran zu zweifeln, daß, solch em kreativitätsfördernder Mathematikunterricht nicht auch bei einem großen Teil aller Schüler eingesetzt werden kann, um ihre Gewandtheit und Flexibilität im Hinblick auf Darstellung und Strategien sowie ihr Interesse an neuartigen Aufgaben, Lösungsmethoden oder Lösungen zu fördern.
Similar content being viewed by others
References
Balka, D. S. (1974): Creative ability in mathematics.—In: Arithmetic Teacher 21, p. 633–636.
Brown, S. I., Walter, M. I. (1983): The art of problem posing.— Hillsdale, NJ: Lawrence Erlbaum Associates.
Getzels, J. W.; Csikszentmihalyi, M. (1976): The creative vision. —New York; Wiley
Getzels, J. W.; Jackson, P. W. (1962): Creativity and intelligence: Exploration with gifted children.—New York: Wiley
Ghiselin, B. (Ed.) (1952): The creative process.—New York: Mentor
Hadamard, J. (1945): The psychology of invention in the mathematical fied.—Princeton, NJ: Princeton University Press
Hashimoto, Y. (1987). Classroom practice of problem solving in Japanese elementary schools.—In: J. Becker, T. Miwa (Eds.), Proceedings of the U.S.-Japan seminar on mathematical problem solving. Columbus, OH: ERIC/SMEAC Clearinghouse (ED 304 315), p. 94–119.
Hashimoto, Y.; Sawada, T. (1984): Research on the mathematics teaching by developmental treatment of mathematical problems. —In: T. Kawaguchi (Ed.), Proceedings of the ICMI-JSME regional conference on mathematical education. Japan: Japan Society of Mathematical Education, p. 309–313.
Healy, C. C. (1993): Creating miracles: A story of student discovery. —Berkeley, CA: Key Curriculum Press
Helson, R. (1983): Creative mathematicians.—In: R. S. Albert (Ed.), Genius and eminence: The social psychology of creativity and exceptional achievement. Oxford Pergamon Press, p. 311–330
Holyoak, K. J.; Thagard, P. (1995): Mental leaps: Analogy in creative thought.—Cambridge, MA: MIT Press
Lesh, R. (1981). Applied mathematical problem solving.—In: Educ. Stud. in Math. 12, p. 235–264
Mansfield, R. S.; Busse, T. V. (1981): The psychology of creativity and discovery: Scientists and their work.—Chicago Nelson Hall
Nohda, N. (1986): A study of “open-approach” method in school mathematics.—In: Tsukoba J. of Educ. Study in Math. 5, p. 119–131.
Nohda, N. (1995): Teaching and evaluating using “open-ended problems” in the classroom.—In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 57–61
Pehkonen, E. (1995): Use of open-ended problems.—In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 55–57
Poincare, H. (1948): Mathematical creation.—In: Scientific American 169, p. 54–57
Pollak, H. O. (1987): Cognitive science and mathematics education: A mathematician’s perspective.—In:A. H. Schoenfeld (Ed), Cognitive science and mathematics education. Hillsdale, NJ: Lawrence-Erlbaum Associates.
Polya, G. (1954): Mathematics and plausible reasoning.—Princeton, NJ: Princeton University Press
Rothenberg, A. (1979): The emerging goddess.—Chicago: University of Chicago Press
Schoenfeld, A. H. (1985): Mathematical problem solving.—Orlando, FL: Academic Press
Shimada, S. (Ed.) (1977): On lessons using open-ended problems in mathematics teachin.—Tokyo: Mizuumishobo
Silver, E. A. (1995): The nature and use of open problems in mathematics education: Mathematical and pedagogical perspectives. —In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 67–72
Silver, E. A. (1994): On mathematical problem posing.—In: For the learning of mathematics 14 (No. 1), p. 19–28.
Silver, E. A.; Adams, V. M. (1987): Using open-ended problems. —In: Arith. Teacher 34 (No. 9), p. 34–35
Silver, E. A.; Kilpatrick, J.; Schlesinger, B. (1990) Thinking through mathematic: Fostering inquiry and communication in mathematics classrooms.—New York: The College Board
Skinner, P. (1991). What’s your problem? Posing and solving mathematical problems, K-2.—Portsmouth, NH: Heinemann
Stacey, K. (1995): The challenges of keeping open problem-solving open in school mathematics.—In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 62–77
Stanic, G. M. A.; Kilpatrick, J. (1988): Historical perspectives on problem solving in the mathematics curriculum.—In: R. I. Charles; E. A. Silver (Eds.), The teaching and assessing of mathematical problem solving. Reston, VA: NCTM, p. 1–22
Sternberg, R. J. (Ed.) (1988): The nature of creativity: Contemporary psychological perspectives.—New York: Cambridge University Press
Streefland, L. (1987): Free production of fraction monographs. —In: J. C. Bergeron; N. Herscovics; C. Kieran (Eds.): Proceedings of the Eleventh Annual Meeting of the International Group for the Psychology of Mathematics Education, Volume I.—Montreal: Canada, p. 405–410
Sweller, J.; Mawer, R. F.; Ward, M. R. (1983): Development of expertise in mathematical problem solving.—In: J. of Experimental Psych. 112, p. 639–661.
Torrance, E. P. (1966): The Torrance tests of creative thinking: Technical-norms manual.—Princeton, NJ: Personnel Press
Torrance, E. P. (1974): The Torrance tests of creative thinking: Technical-norms manual.—Bensenville, IL: Scholastic Testing Services
Torrance, E. P. (1988): The nature of creativity as manifest in its testing.—In: R. J. Sternberg (Ed.). The nature of creativity: Contemporary psychological perspectives.—New York: Cambridge University Press, p. 43–75.
Van den Brink, J. F. (1987): Children as arithmetic book authors —In: For the learning of mathematics 7 (No. 2), p. 44–48.
Weisberg, R. W. (1988): Problem solving and creativity.—In R. J. Sternberg (Ed.), The nature of creativity. New York: Cambridge University Press, p. 148–176.
Yerushalmy, M.; Chazan, D.; Gordon, M. (1993): Posing problems. One aspect of bringing inquiry into classrooms.—In: J. Schwartz, M. Yerushalmy, B. Wilson (Eds.), The Geometric Supposer: What is it a case of? Hillsdale, NJ: Lawrence Erlbaum Associates, p. 117–142.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Silver, E.A. Fostering creativity through instruction rich in mathematical problem solving and problem posing. Zentralblatt für Didaktik der Mathematik 29, 75–80 (1997). https://doi.org/10.1007/s11858-997-0003-x
Issue Date:
DOI: https://doi.org/10.1007/s11858-997-0003-x