[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fostering creativity through instruction rich in mathematical problem solving and problem posing

Kreativität fördern durch einen Unterricht, der reich ist an Situationen des mathematischen Problemlösens und Aufgabenerfindens

  • Analyses
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Although creativity is often viewed as being associated with the notions of “genius” or exceptional ability, it can be productive for mathematics educators to view creativity instead as an orientation or disposition toward mathematical activity that can be fostered broadly in the general school population. In this article, it is argued that inquiry-oriented mathematics instruction which includes problem-solving and problem-posing tasks and activities can assist students to develop more creative approaches to mathematics. Through the use of such tasks and activities, teachers can increase their students’ capacity with respect to the core dimensions of creativity, namely, fluency, flexibility, and novelty. Because the instructional techniques discussed in this article have been used successfully with students all over the world, there is little reason to believe that creativity-enriched mathematics instruction cannot be used with a broad range of students in order to increase their representational and strategic fluency and flexibility, and their appreciation for novel problems, solution methods, or solutions.

Kurzreferat

Kreativität wird oft im Zusammenhang gesehen mit Begriffen wie “Genie” oder außergewöhnliche Fähigkeiten. Demgegenüber kann es für Mathematiklehrer jedoch produktiver sein. Kreativität als Orientierung für mathematische Aktivitäten zu nehmen, die auf diese Weise bei der Allgemeinheit der Schüler breit gefördert werden kann. In diesem Beitrag wird gezeigt, daß forschender Mathematikunterricht, der Aufgaben zum Problemlösen und zum Aufgabenerfinden beinhaltet, Schüler dabei unterstützen kann, mehr kreative Zugänge zur Mathematik zu entwickeln. Durch solche Aktivitäten und Aufgaben kann der Lehrer die Fähigkeiten seiner Schüler im Hinblick auf die Kernaspekte von Kreativität erweitern, nämlich Gewandtheit, Flexibilität und Neues. Die hier diskutierten Unterrichtsmethoden wurden weltweit erfolgreich angewendet, so daß es keinen Grund gibt, daran zu zweifeln, daß, solch em kreativitätsfördernder Mathematikunterricht nicht auch bei einem großen Teil aller Schüler eingesetzt werden kann, um ihre Gewandtheit und Flexibilität im Hinblick auf Darstellung und Strategien sowie ihr Interesse an neuartigen Aufgaben, Lösungsmethoden oder Lösungen zu fördern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balka, D. S. (1974): Creative ability in mathematics.—In: Arithmetic Teacher 21, p. 633–636.

  • Brown, S. I., Walter, M. I. (1983): The art of problem posing.— Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Getzels, J. W.; Csikszentmihalyi, M. (1976): The creative vision. —New York; Wiley

    Google Scholar 

  • Getzels, J. W.; Jackson, P. W. (1962): Creativity and intelligence: Exploration with gifted children.—New York: Wiley

    Google Scholar 

  • Ghiselin, B. (Ed.) (1952): The creative process.—New York: Mentor

    Google Scholar 

  • Hadamard, J. (1945): The psychology of invention in the mathematical fied.—Princeton, NJ: Princeton University Press

    Google Scholar 

  • Hashimoto, Y. (1987). Classroom practice of problem solving in Japanese elementary schools.—In: J. Becker, T. Miwa (Eds.), Proceedings of the U.S.-Japan seminar on mathematical problem solving. Columbus, OH: ERIC/SMEAC Clearinghouse (ED 304 315), p. 94–119.

    Google Scholar 

  • Hashimoto, Y.; Sawada, T. (1984): Research on the mathematics teaching by developmental treatment of mathematical problems. —In: T. Kawaguchi (Ed.), Proceedings of the ICMI-JSME regional conference on mathematical education. Japan: Japan Society of Mathematical Education, p. 309–313.

    Google Scholar 

  • Healy, C. C. (1993): Creating miracles: A story of student discovery. —Berkeley, CA: Key Curriculum Press

    Google Scholar 

  • Helson, R. (1983): Creative mathematicians.—In: R. S. Albert (Ed.), Genius and eminence: The social psychology of creativity and exceptional achievement. Oxford Pergamon Press, p. 311–330

    Google Scholar 

  • Holyoak, K. J.; Thagard, P. (1995): Mental leaps: Analogy in creative thought.—Cambridge, MA: MIT Press

    Google Scholar 

  • Lesh, R. (1981). Applied mathematical problem solving.—In: Educ. Stud. in Math. 12, p. 235–264

  • Mansfield, R. S.; Busse, T. V. (1981): The psychology of creativity and discovery: Scientists and their work.—Chicago Nelson Hall

    Google Scholar 

  • Nohda, N. (1986): A study of “open-approach” method in school mathematics.—In: Tsukoba J. of Educ. Study in Math. 5, p. 119–131.

  • Nohda, N. (1995): Teaching and evaluating using “open-ended problems” in the classroom.—In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 57–61

  • Pehkonen, E. (1995): Use of open-ended problems.—In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 55–57

  • Poincare, H. (1948): Mathematical creation.—In: Scientific American 169, p. 54–57

  • Pollak, H. O. (1987): Cognitive science and mathematics education: A mathematician’s perspective.—In:A. H. Schoenfeld (Ed), Cognitive science and mathematics education. Hillsdale, NJ: Lawrence-Erlbaum Associates.

    Google Scholar 

  • Polya, G. (1954): Mathematics and plausible reasoning.—Princeton, NJ: Princeton University Press

    Google Scholar 

  • Rothenberg, A. (1979): The emerging goddess.—Chicago: University of Chicago Press

    Google Scholar 

  • Schoenfeld, A. H. (1985): Mathematical problem solving.—Orlando, FL: Academic Press

    Google Scholar 

  • Shimada, S. (Ed.) (1977): On lessons using open-ended problems in mathematics teachin.—Tokyo: Mizuumishobo

    Google Scholar 

  • Silver, E. A. (1995): The nature and use of open problems in mathematics education: Mathematical and pedagogical perspectives. —In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 67–72

  • Silver, E. A. (1994): On mathematical problem posing.—In: For the learning of mathematics 14 (No. 1), p. 19–28.

  • Silver, E. A.; Adams, V. M. (1987): Using open-ended problems. —In: Arith. Teacher 34 (No. 9), p. 34–35

  • Silver, E. A.; Kilpatrick, J.; Schlesinger, B. (1990) Thinking through mathematic: Fostering inquiry and communication in mathematics classrooms.—New York: The College Board

    Google Scholar 

  • Skinner, P. (1991). What’s your problem? Posing and solving mathematical problems, K-2.—Portsmouth, NH: Heinemann

    Google Scholar 

  • Stacey, K. (1995): The challenges of keeping open problem-solving open in school mathematics.—In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 62–77

  • Stanic, G. M. A.; Kilpatrick, J. (1988): Historical perspectives on problem solving in the mathematics curriculum.—In: R. I. Charles; E. A. Silver (Eds.), The teaching and assessing of mathematical problem solving. Reston, VA: NCTM, p. 1–22

    Google Scholar 

  • Sternberg, R. J. (Ed.) (1988): The nature of creativity: Contemporary psychological perspectives.—New York: Cambridge University Press

    Google Scholar 

  • Streefland, L. (1987): Free production of fraction monographs. —In: J. C. Bergeron; N. Herscovics; C. Kieran (Eds.): Proceedings of the Eleventh Annual Meeting of the International Group for the Psychology of Mathematics Education, Volume I.—Montreal: Canada, p. 405–410

  • Sweller, J.; Mawer, R. F.; Ward, M. R. (1983): Development of expertise in mathematical problem solving.—In: J. of Experimental Psych. 112, p. 639–661.

  • Torrance, E. P. (1966): The Torrance tests of creative thinking: Technical-norms manual.—Princeton, NJ: Personnel Press

    Google Scholar 

  • Torrance, E. P. (1974): The Torrance tests of creative thinking: Technical-norms manual.—Bensenville, IL: Scholastic Testing Services

    Google Scholar 

  • Torrance, E. P. (1988): The nature of creativity as manifest in its testing.—In: R. J. Sternberg (Ed.). The nature of creativity: Contemporary psychological perspectives.—New York: Cambridge University Press, p. 43–75.

    Google Scholar 

  • Van den Brink, J. F. (1987): Children as arithmetic book authors —In: For the learning of mathematics 7 (No. 2), p. 44–48.

  • Weisberg, R. W. (1988): Problem solving and creativity.—In R. J. Sternberg (Ed.), The nature of creativity. New York: Cambridge University Press, p. 148–176.

    Google Scholar 

  • Yerushalmy, M.; Chazan, D.; Gordon, M. (1993): Posing problems. One aspect of bringing inquiry into classrooms.—In: J. Schwartz, M. Yerushalmy, B. Wilson (Eds.), The Geometric Supposer: What is it a case of? Hillsdale, NJ: Lawrence Erlbaum Associates, p. 117–142.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silver, E.A. Fostering creativity through instruction rich in mathematical problem solving and problem posing. Zentralblatt für Didaktik der Mathematik 29, 75–80 (1997). https://doi.org/10.1007/s11858-997-0003-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-997-0003-x

ZDM-Classification

Navigation