[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Computing Holonomic D-Modules Associated to a Family of Non-isolated Hypersurface Singularities via Comprehensive Gröbner Systems of PBW Algebra

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The reduced b-functions and the relevant holonomic D-modules associated to a family of hypersurfaces with non-isolated singularities are considered in the context of symbolic computation. Based on the theory of comprehensive Gröbner systems, algorithms of computing reduced b-functions and holonomic D-modules for parametric cases are introduced. A strategy for analyzing holonomic D-modules is described. Main ingredients of our approach are comprehensive Gröbner systems on Poincaré–Birkhoff–Witt algebra and local cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreas, D., Brickenstein, M., Levandovskyy, V., Martín-Morales, J., Schönenmann, J.: Constructive D-module theory with singular. Math. Comput. Sci. 4, 359–383 (2010)

    Article  MathSciNet  Google Scholar 

  2. Biosca, H., Briançon, J., Masisonobe, P., et Maynadier, H.: Espace conormaux relatifs II, Modules différentiels. Publ. Res. Inst. Math. Sci. 34, 123–134 (1998)

  3. Briançon, J., Maisonobe, P.: Remarques sur l’idéal de Bernstein Associé à des Polynômes. Prépublication Univ. Nice-Sophia Antipolis, vol. 650. Univ. Nice-Sophia Antipolis (2002)

  4. Answer to some equisingularity questions: Fernandez de Bobadilla. J. Invent. Math. 161, 657–675 (2005)

    Google Scholar 

  5. Fernandez de Bobadilla, J.: Topology of hypersurface singularities with 3-dimensional critical set. Comment. Math. Helv. 88, 253–304 (2013)

  6. Gago-Vargas, J., Hartill-Hermoso, M.I., Ucha-Enríquez, J.M.: Nouvelle cuisine for the computation of the annihilating ideal of \(f^s\). Lecture Notes in Comput. Sci. 3718, 162–173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gago-Vargas, J., Hartill-Hermoso, M.I., Ucha-Enríquez, J.M.: Comparison of theoretical complexities of two methods for computing annihilating ideals of polynomials. J. Symb. Comput. 40, 1076–1086 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kashiwara, M.: b-Functions and hypersurface singularities (noted by T. Miwa in Japanese). RIMS Kôkyûroku 225, 16–53 (1975)

  9. Kashiwara, M.: On the maximally overdetermined system of linear differential equations. Publ. Res. Inst. Math. Sci. 10, 563–579 (1974–1975)

  10. Kashiwara, M.: B-Functions and holonomic systems—rationality of roots of b-functions. Invent. Math. 38, 33–53 (1976/77)

  11. Kashiwara, M.: On the holonomic systems of linear differential equations. II. Invent. Math. 49, 121–142 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kashiwara, M.: Systems of microdifferential equations. In: Progress in Math., vol. 34. Birkhäuser (1983)

  13. Kashiwara, M.: D-Modules and Microlocal Calculus, Translations of Mathematical Monographes, vol. 217. AMS (2003)

  14. Levandovskyy, V.: PLURAL, a non-commutative extension of SINGULAR: past, present and future. Lect. Notes Comput. Sci. 4151, 144–157 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Levandovskyy, V., Martín-Morales, J.: Algorithms for checking rational roots of b-functions and their applications. J. Algebra 352, 408–429 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leykin, A.: D-Modules for Macaulay2 (with Harry Tsai). http://antonleykin.math.gatech.edu/Dmodules/index.html

  17. Massey, D.B.: The Lê varieties. I. Invent. Math. 99, 357–376 (1990)

    Article  MATH  Google Scholar 

  18. Massey, D.B.: The Lê varieties. II. Invent. Math. 104, 113–148 (1991)

    Article  MATH  Google Scholar 

  19. Massey, D.B.: Lê Cycles and Hypersurface Singularities, Lecture Notes in Math., vol. 1615, Springer (1995)

  20. Nabeshima, K., Ohara, K., Tajima, S.: Comprehensive Gröbner systems in rings of differential operators, holonomic D-modules and b-functions, ISSAC2016. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 349–356 (2016)

  21. Nabeshima, K., Ohara, K., Tajima, S.: Comprehensive Gröbner systems in PBW algebras, Bernstein-Sato ideals and holonomic D-modules. J. Symb. Compt. 89, 146–170 (2018)

    Article  MATH  Google Scholar 

  22. Nabeshima, K., Tajima, S.: Computation methods of b-functions associated with \(\mu \)-constant deformations -case of inner modality2. Kyushu J. Math. 75, 55–76 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Noro, M., Takeshima, T.: Risa/Asir—a computer algebra system. In: ISSAC: Proceedings of the International Symposium on Symbolic and Algebraic Computation, vol. 1992, pp. 387–396. ACM (1992)

  24. Oaku, T.: Computation of the characteristic variety and the singular locus of a system of differential equations with polynomial coefficients. Japan J. Indus. Appl. Math. 11, 485–497 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oaku, T., Shimoyama, T.: A Gröbner basis method for modules over rings of differential operators. J. Symb. Comput. 18, 223–248 (1994)

    Article  MATH  Google Scholar 

  26. Oaku, T.: Algorithms for the b-function and D-modules associated with a polynomial. J. Pure Appl. Algebra 117 & 118, 495–518 (1997)

  27. Schapira, P.: Microdifferential Systems in the Complex Domain. Springer (1985)

  28. Tajima, S.: Local cohomology solutions of holonomic D-modules associated with non-isolated hypersurface singularities. RIMS Kôkyûroku Bessatsu 75, 61–72 (2019)

    MATH  Google Scholar 

  29. Tajima, S., Umeta, Y.: Computing structure of holonomic D-modules associated with a simple line singularity. RIMS Kôkyûroku Bessatsu. 57, 125–140 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Tajima, S., Umeta, Y.: Holonomic D-modules associated with a simple line singularity and the vertical monodromy. Funkc. Ekvacioj 64, 17–48 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tajima, S., Umeta, Y.: Algebraic analysis of Siersma’s non-isolated hypersurface singularities. Hokkaido Math. Journal. 51, 117–151 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yano, T.: On the theory of b-functions. Pub. Res. Inst. Math. Sci. 14, 111–202 (1978)

    Article  MATH  Google Scholar 

  33. Whitney, H.: Tangents to an analytic variety. Ann. Math. 81, 496–549 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  34. Whitney, H.: Complex Analytic Varieties. Addison-Wesley (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Tajima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partly supported by JSPS Grant-in-Aid for Science Research (C) (18K03320, 18K03214, 20K03637 and 21K03291).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajima, S., Nabeshima, K., Ohara, K. et al. Computing Holonomic D-Modules Associated to a Family of Non-isolated Hypersurface Singularities via Comprehensive Gröbner Systems of PBW Algebra. Math.Comput.Sci. 17, 6 (2023). https://doi.org/10.1007/s11786-022-00553-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11786-022-00553-4

Keywords

Mathematics Subject Classification

Navigation