Abstract
The reduced b-functions and the relevant holonomic D-modules associated to a family of hypersurfaces with non-isolated singularities are considered in the context of symbolic computation. Based on the theory of comprehensive Gröbner systems, algorithms of computing reduced b-functions and holonomic D-modules for parametric cases are introduced. A strategy for analyzing holonomic D-modules is described. Main ingredients of our approach are comprehensive Gröbner systems on Poincaré–Birkhoff–Witt algebra and local cohomology.
Similar content being viewed by others
References
Andreas, D., Brickenstein, M., Levandovskyy, V., Martín-Morales, J., Schönenmann, J.: Constructive D-module theory with singular. Math. Comput. Sci. 4, 359–383 (2010)
Biosca, H., Briançon, J., Masisonobe, P., et Maynadier, H.: Espace conormaux relatifs II, Modules différentiels. Publ. Res. Inst. Math. Sci. 34, 123–134 (1998)
Briançon, J., Maisonobe, P.: Remarques sur l’idéal de Bernstein Associé à des Polynômes. Prépublication Univ. Nice-Sophia Antipolis, vol. 650. Univ. Nice-Sophia Antipolis (2002)
Answer to some equisingularity questions: Fernandez de Bobadilla. J. Invent. Math. 161, 657–675 (2005)
Fernandez de Bobadilla, J.: Topology of hypersurface singularities with 3-dimensional critical set. Comment. Math. Helv. 88, 253–304 (2013)
Gago-Vargas, J., Hartill-Hermoso, M.I., Ucha-Enríquez, J.M.: Nouvelle cuisine for the computation of the annihilating ideal of \(f^s\). Lecture Notes in Comput. Sci. 3718, 162–173 (2005)
Gago-Vargas, J., Hartill-Hermoso, M.I., Ucha-Enríquez, J.M.: Comparison of theoretical complexities of two methods for computing annihilating ideals of polynomials. J. Symb. Comput. 40, 1076–1086 (2005)
Kashiwara, M.: b-Functions and hypersurface singularities (noted by T. Miwa in Japanese). RIMS Kôkyûroku 225, 16–53 (1975)
Kashiwara, M.: On the maximally overdetermined system of linear differential equations. Publ. Res. Inst. Math. Sci. 10, 563–579 (1974–1975)
Kashiwara, M.: B-Functions and holonomic systems—rationality of roots of b-functions. Invent. Math. 38, 33–53 (1976/77)
Kashiwara, M.: On the holonomic systems of linear differential equations. II. Invent. Math. 49, 121–142 (1978)
Kashiwara, M.: Systems of microdifferential equations. In: Progress in Math., vol. 34. Birkhäuser (1983)
Kashiwara, M.: D-Modules and Microlocal Calculus, Translations of Mathematical Monographes, vol. 217. AMS (2003)
Levandovskyy, V.: PLURAL, a non-commutative extension of SINGULAR: past, present and future. Lect. Notes Comput. Sci. 4151, 144–157 (2006)
Levandovskyy, V., Martín-Morales, J.: Algorithms for checking rational roots of b-functions and their applications. J. Algebra 352, 408–429 (2012)
Leykin, A.: D-Modules for Macaulay2 (with Harry Tsai). http://antonleykin.math.gatech.edu/Dmodules/index.html
Massey, D.B.: The Lê varieties. I. Invent. Math. 99, 357–376 (1990)
Massey, D.B.: The Lê varieties. II. Invent. Math. 104, 113–148 (1991)
Massey, D.B.: Lê Cycles and Hypersurface Singularities, Lecture Notes in Math., vol. 1615, Springer (1995)
Nabeshima, K., Ohara, K., Tajima, S.: Comprehensive Gröbner systems in rings of differential operators, holonomic D-modules and b-functions, ISSAC2016. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 349–356 (2016)
Nabeshima, K., Ohara, K., Tajima, S.: Comprehensive Gröbner systems in PBW algebras, Bernstein-Sato ideals and holonomic D-modules. J. Symb. Compt. 89, 146–170 (2018)
Nabeshima, K., Tajima, S.: Computation methods of b-functions associated with \(\mu \)-constant deformations -case of inner modality2. Kyushu J. Math. 75, 55–76 (2021)
Noro, M., Takeshima, T.: Risa/Asir—a computer algebra system. In: ISSAC: Proceedings of the International Symposium on Symbolic and Algebraic Computation, vol. 1992, pp. 387–396. ACM (1992)
Oaku, T.: Computation of the characteristic variety and the singular locus of a system of differential equations with polynomial coefficients. Japan J. Indus. Appl. Math. 11, 485–497 (1994)
Oaku, T., Shimoyama, T.: A Gröbner basis method for modules over rings of differential operators. J. Symb. Comput. 18, 223–248 (1994)
Oaku, T.: Algorithms for the b-function and D-modules associated with a polynomial. J. Pure Appl. Algebra 117 & 118, 495–518 (1997)
Schapira, P.: Microdifferential Systems in the Complex Domain. Springer (1985)
Tajima, S.: Local cohomology solutions of holonomic D-modules associated with non-isolated hypersurface singularities. RIMS Kôkyûroku Bessatsu 75, 61–72 (2019)
Tajima, S., Umeta, Y.: Computing structure of holonomic D-modules associated with a simple line singularity. RIMS Kôkyûroku Bessatsu. 57, 125–140 (2016)
Tajima, S., Umeta, Y.: Holonomic D-modules associated with a simple line singularity and the vertical monodromy. Funkc. Ekvacioj 64, 17–48 (2021)
Tajima, S., Umeta, Y.: Algebraic analysis of Siersma’s non-isolated hypersurface singularities. Hokkaido Math. Journal. 51, 117–151 (2022)
Yano, T.: On the theory of b-functions. Pub. Res. Inst. Math. Sci. 14, 111–202 (1978)
Whitney, H.: Tangents to an analytic variety. Ann. Math. 81, 496–549 (1965)
Whitney, H.: Complex Analytic Varieties. Addison-Wesley (1972)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work has been partly supported by JSPS Grant-in-Aid for Science Research (C) (18K03320, 18K03214, 20K03637 and 21K03291).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Tajima, S., Nabeshima, K., Ohara, K. et al. Computing Holonomic D-Modules Associated to a Family of Non-isolated Hypersurface Singularities via Comprehensive Gröbner Systems of PBW Algebra. Math.Comput.Sci. 17, 6 (2023). https://doi.org/10.1007/s11786-022-00553-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11786-022-00553-4
Keywords
- Comprehensive Gröbner system
- Poincaré–Birkhof–Witt algebra
- Non-isolated singularity
- Holonomic D-module
- Local cohomology