Abstract
Local Euler obstruction of a hypersurface with possibly positive dimensional singularities, a constructible function on the hypersurface, is considered in the context of symbolic computation. It is shown that the method due to Lê and Teissier (Ann Math 114:457–491, 1981) that requires genericity conditions for computing local Euler obstructions can be realized as an algorithm in a deterministic way. The key ideas of the proposed algorithm are the use of comprehensive Gröbner systems and of parametric local cohomology systems.
Similar content being viewed by others
References
Barbosa, G.F., Grulha Jr., N.G., Saia, M.J.: Minimal Whitney stratification and Euler obstruction of determinants. Geom. Dedic. 186, 173–180 (2017)
Behrend, K.: Donaldson–Thomas type invariants via microlocal geometry. Ann. Math. 170, 1307–1338 (2009)
Brasselet, J.-P., Schwartz, M.-H.: Sur les classes de Chern d’un ensemble analytique complexe. Astérisques 82–83, 99–147 (1981)
Brasselet, J.-P.: The Euler obstruction and the Chern obstruction. Bull. Lond. Math. Soc. 42, 1035–1043 (2010)
Brasselet, J.-P., Lê, L.T., Seade, J.: Euler obstruction and indices of vector fields. Topology 39, 1193–1208 (2000)
Brasselet, J.-P., Grulha Jr., M.G.: Local Euler obstruction, old and new II. Lond. Math. Soc. Lect. Notes Ser. 380, 23–45 (2010)
Brylinski, J.L., Dubson, A., Kashiwara, M.: Formule de l’indice pour les modules holonomes et obstruction d’Euler. C. R. Acad. Sci. Paris Sér. A 293, 573–576 (1981)
Dalbelo, T.M., Grulha Jr., N.G., Pereira, M.S.: Toric surfaces, vanishing Euler characteristics and Euler obstruction of a function. Ann. Faculté des Sci. Toulouse 24, 1–20 (2015)
Dalbelo, T.M., Grulha Jr., N.G.: The Euler obstruction and torus action. Geom. Dedic. 175, 373–383 (2015)
Dubson, A.: Classes caractéristiques des variétés singulières. C. R. Acad. Sci. Paris Sér. A 287, 237 (1978)
Dubson, A.: Calcul des Invariants Numeriques des Singularités et Applications, Somderforschungsbereich, vol. 40. Univ. Bonn, Bonn (1981)
Dutertre, N., Grulha Jr., N.G.: Lê–Greuel type formula for the Euler obstruction and application. Adv. Math. 251, 127–146 (2014)
Ernström, L.: Topological Radon transforms and the local Euler obstruction. Duke Math. 76, 1–21 (1994)
Gaffney, T., Grulha, N.G., Ruas, M.A.S.: The local Euler obstruction and topology of the stabilization of associated determinantal varieties (2017). arXiv:1611.00749v7
Grulha Jr., N.G.: L’obstruction d’Euler local d’une application. Ann. Facultés des Sci. de Toulouse 17, 53–71 (2008)
Grulha Jr., N.G.: The Euler obstruction and Bruce–Roberts Milnor number. Quart. J. Math. 60, 291–302 (2009)
Henry, J.P., Merle, M., Sabbah, C.: Sur la condition de Thom stricte pour un morphisme analytique complexe. Ann. Scient. Éc. Norm. Sup. 17, 227–268 (1984)
Jorge Pérez, V.H., Levcovitz, D., Saia, M.J.: Invariants, equisingularity and Euler obstruction of map germs \( {\mathbb{C}}^n \) to \( {\mathbb{C}}^n \). J. Reine Angew. Math. 587, 145–167 (2005)
Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Proceedings of International Symposium on Symbolic and Algebraic Computation 2010, pp. 29–36. ACM (2010)
Kashiwara, M.: Index theorem for maximally overdetermined systems of linear differential equations. Proc. Jpn. Acad. 49, 803–804 (1973)
Kashiwara, M.: Systems of Microdifferential Equations. Birkhäuser, Basel (1983)
Lê, L.T., Teissier, B.: Variété polaires locales et classes de Chern de variétés singulières. Ann. Math. 114, 457–491 (1981)
MacPherson, R.D.: Chern class for singular algebraic varieties. Ann. Math. 100, 423–432 (1974)
Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. Lecture Notes in Computer Science, 7442, pp. 248–259, Springer (2012)
Nabeshima, K., Tajima, S.: Computing \( \mu ^{\ast } \) sequences of hypersurface isolated singularities via parametric local cohomology systems. Acta Math. Vietnam 42, 279–288 (2017)
Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122 (2017)
Nabeshima, K., Tajima, S.: Solving parametric ideal membership problems and computing integral numbers in a ring of convergent power series via comprehensive Gröbner systems. Math. Comput. Sci. (to appear)
Noro, M., Takeshima, T.: Risa/Asir—a computer algebra system. In: Proceedings of International Symposium on Symbolic and Algebraic Computation 1992, pp. 387–396. ACM (1992). http://www.math.kobe-u.ac.jp/Asir/asir.html
Schwartz, M.-H.: Classes caractéristiques définies par une stratification d’une variété analytique complexe. C.R.A.S. 260, 3262–3264 et 3535–3537 (1965)
Schwartz, M.-H.: Lectures on Stratification of Complex Analytic Set. Tata Inst (1966)
Schwartz, M.-H.: Classes de Chern des Ensembles Analytiques. Hermann, Paris (2000)
Shibuta, T., Tajima, S.: An algorithm for computing the Hilbert–Samuel multiplicities and reductions of zero-dimensional ideal of Cohen–Macaulay local rings (4 Oct. 2017). arXiv:1710.01435v1 [math AC]
Spanier, E.H.: Algebraic Topology. McGraw-Hill, Tokyo (1966)
Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Proceedings of International Symposium on Symbolic and Algebraic Computation 2006, pp. 326–331. ACM Press (2006)
Teissier, B.: Variétés polaires I. Invent. Math. 40, 267–292 (1977)
Teissier, B.: Variétés polaires II. Lect. Notes Math. 961, 314–491 (1982)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (Nos. 15KT0102, 15K04891) and JSPS Grant-in-Aid for Young Scientist (B) (No. 15K17513).
Rights and permissions
About this article
Cite this article
Tajima, S., Nabeshima, K. An Implementation of the Lê–Teissier Method for Computing Local Euler Obstructions. Math.Comput.Sci. 13, 273–280 (2019). https://doi.org/10.1007/s11786-018-0366-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11786-018-0366-0
Keywords
- Comprehensive Gröbner systems
- Parametric local cohomology systems
- Local Euler obstruction
- Polar multiplicity formula