Abstract
In this paper, we introduce and solve the radical cubic functional equation
We also establish stability in quasi-\({\beta}\)-Banach spaces, and then the stability by using subadditive and subquadratic functions for the radical cubic functional equation in (\({\beta}\), p)-Banach spaces is given.
Similar content being viewed by others
References
Aoki T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2, 64–66 (1950)
Bourgin D.G.: Classes of transformations and bordering transformations. Bull. Amer. Math. Soc. 57, 223–237 (1951)
Czerwik S.: On the stability of the quadratic mapping in normed spaces. Abh. Math. Semin. Univ. Hambg. 62, 59–64 (1992)
M. Eshaghi Gordji and H. Khodaei, On the generalized Hyers–Ulam–Rassias stability of quadratic functional equations. Abstr. Appl. Anal. 2009 (2009), Article ID 923476.
Eshaghi Gordji M., Khodaei H.: Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces. Nonlinear Anal. 71, 5629–5643 (2009)
M. Eshaghi Gordji and H. Khodaei, Stability of Functional Equations. Lap Lambert Academic Publishing, Saarbrücken, 2010.
M. Eshaghi Gordji, H. Khodaei, A. Ebadian and G. H. Kim, Nearly radical quadratic functional equations in p-2-normed spaces. Abstr. Appl. Anal. 2012 (2012), Article ID 896032.
M. Eshaghi Gordji, H. Khodaei and H. M. Kim, Approximate quartic and quadratic mappings in quasi-Banach spaces. Int. J. Math. Math. Sci. 2011 (2011), Article ID 734567.
Eshaghi Gordji M., Parviz M.: On the Hyers-Ulam stability of the functional equation \({f(\sqrt{x2 + y2}) = f(x) + f(y)}\). Nonlinear Funct. Anal. Appl. 14, 413–420 (2009)
Forti G.L.: Comments on the core of the direct method for proving Hyers–Ulam stability of functional equation. J. Math. Anal. Appl. 295, 127–133 (2004)
Gajda Z.: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431–434 (1991)
Gǎvruta P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)
Ghazanfari A.G., Alizadeh Z.: On approximate ternary m-derivations and \({\sigma}\)-homomorphisms. J. Fixed Point Theory Appl. 17, 625–640 (2015)
Hyers D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)
Jung S.M.: On the Hyers–Ulam–Rassias stability of a quadratic functional equation. J. Math. Anal. Appl. 232, 384–393 (1999)
Jung S.M., Popa D., Th. Rassias M.: On the stability of the linear functional equation in a single variable on complete metric groups. J. Global Optim. 59, 165–171 (2014)
Jung S.M., Th. Rassias M., Mortici C.: On a functional equation of trigonometric type. Appl. Math. Comput. 252, 293–303 (2015)
D. Kang, On the stability of generalized quartic mappings in quasi-\({\beta}\)-normed spaces. J. Inequal. Appl. 2010 (2010), Article ID 198098.
Khodaei H., Eshaghi Gordji M., Kim S.S., Cho Y.J.: Approximation of radical functional equations related to quadratic and quartic mappings. J. Math. Anal. Appl. 395, 284–297 (2012)
S. S. Kim, Y. J. Cho and M. Eshaghi Gordji, On the generalized Hyers-Ulam- Rassias stability problem of radical functional equations. J. Inequal. Appl. 2012 (2012), Article ID 186.
Lee S.H., Im S.M., Hawng I.S.: Quartic functional equation. J. Math. Anal. Appl. 307, 387–394 (2005)
Lee Y.H., JungS.M.Th. Rassias M.: On an n-dimensional mixed type additive and quadratic functional equation. Appl. Math. Comput. 228, 13–16 (2014)
Th.Rassias M.: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72, 297–300 (1978)
Th. Rassias M.: Solution of a functional equation problem of Steven Butler. Octogon Mathematics Magazine 12, 152–153 (2004)
Rassias J.M., Kim H.M.: Generalized Hyers-Ulam stability for general additive functional equation in quasi-\({\beta}\)-normed spaces. J. Math. Anal. Appl. 356, 302–309 (2009)
Th. Rassias M., Semrl P.: On the behavior of mappings which do not satisfy Hyers-Ulam stability. Proc. Amer. Math. Soc. 114, 989–993 (1992)
S. M. Ulam, Problems in Modern Mathematics. Chapter VI, Science Editions, Wiley, New York, 1964.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Alizadeh, Z., Ghazanfari, A.G. On the stability of a radical cubic functional equation in quasi-\({\beta}\)-spaces. J. Fixed Point Theory Appl. 18, 843–853 (2016). https://doi.org/10.1007/s11784-016-0317-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11784-016-0317-9