Abstract
In this paper, the performance of a solar thermal system with a focus on space heating was investigated. A 70 m2 detached house was considered in the weather conditions of the city of Tehran, Iran. A thermosyphon solar water heater with a flat plate collector combined with an auxiliary electrical heater supplies the heating demand of the house. The proposed system was modeled and analyzed using TRNSYS software. In this regard, the TRNBuild module was employed for the building load calculation. The model has been simulated for one year of operation. The effects of the solar collector’s surface area and storage volume were assessed. The results show that for a solar collector with a 15 m2 surface area, the solar fraction is 0.29 in January, during which the solar radiation is the lowest. Using solar collectors of 10 m2 and 5 m2 surface areas, the solar fraction falls to 0.23 and 0.14, respectively in January. Besides, two cases of 150 L and 300 L storage tanks are taken into account. Eventually, it is found that using a 15 m2 solar collector and a 150 L storage tank can appropriately provide the building’s heating demand taking the thermal performance and economic aspects into consideration.
摘要
本文研究了空间采暖太阳能集热系统的性能。在伊朗德黑兰城市的天气条件下, 以一座70 m2 的独立住宅为研究对象。住宅的供暖需求由带有平板集热器和辅助电加热器的热虹吸太阳能热水器系 统供应。采用TRNSYS 软件对该系统进行建模和分析。采用TRNBuild 模块进行建筑荷载计算, 并对 该模型进行一年的运行模拟。评估了太阳能集热器表面积和存储体积的影响。结果表明:对于表面积为15 m2 的太阳能集热器,1 月份的太阳辐射率最低,为0.29。对于表面积为10 m2 和5 m2 的太阳能集热器, 1 月份的太阳辐射率分别降至0.23 和0.14。此外, 还考虑了150 L 和300 L 的储罐两种情况。最 终,考虑到热性能和成本,使用一个15 m2 的太阳能集热器和一个150 L 的储罐可以满足建筑的采暖需求。
Similar content being viewed by others
References
KHAN N, KALAIR A, ABAS N, HAIDER A. Review of ocean tidal, wave and thermal energy technologies [J]. Renewable and Sustainable Energy Reviews, 2017, 72: 590–604. DOI: https://doi.org/10.1016/j.rser.2017.01.079.
International Energy Agency. World energy outlook 2015 factsheet. Global energy trends to 2040. The energy Section. Climate chang run-up to COP21 [R]. Paris: OECD Publishing, 2015. DOI: https://doi.org/10.1787/20725302.
ZHENG Xue-qin, YAO Yi-ping. Multi-objective capacity allocation optimization method of photovoltaic EV charging station considering V2G [J]. Journal of Central South University, 2021, 28(2): 481–493. DOI: https://doi.org/10.1007/s11771-021-4616-y.
LI Da-peng, WANG Yu-fan, LIU Gang, LIAO Sheng-ming, LIU Xian-ping. Effect of obstruction on thermal performance of solar water heaters [J]. Journal of Central South University, 2020, 27(4): 1273–1289. DOI: https://doi.org/10.1007/s11771-020-4366-2.
ÜRGE-VORSATZ D, CABEZA L F, SERRANO S, BARRENECHE C, PETRICHENKO K. Heating and cooling energy trends and drivers in buildings [J]. Renewable and Sustainable Energy Reviews, 2015, 41: 85–98. DOI: https://doi.org/10.1016/j.rser.2014.08.039.
JIN Nan, ZHAO Jing, ZHU Neng. Energy efficiency performance of multi-energy district heating and hot water supply system [J]. Journal of Central South University, 2012, 19(5): 1377–1382. DOI: https://doi.org/10.1007/s11771-012-1153-8.
LIANG Ruo-bing, ZHANG Ji-li, ZHAO Liang, MA Liang-dong. Performance enhancement of filled-type solar collector with U-tube [J]. Journal of Central South University, 2015, 22(3): 1124–1131. DOI: https://doi.org/10.1007/s11771-015-2624-5.
NAZARI M A, AHMADI M H, SADEGHZADEH M, SHAFII M B, GOODARZI M. A review on application of nanofluid in various types of heat pipes [J]. Journal of Central South University, 2019, 26(5): 1021–1041. DOI: https://doi.org/10.1007/s11771-019-4068-9.
REDPATH D A G, LO S N G, EAMES P C. Experimental investigation and optimisation study of a direct thermosyphon heat-pipe evacuated tube solar water heater subjected to a northern maritime climate [J]. International Journal of Ambient Energy, 2010, 31(2): 91–100. DOI: https://doi.org/10.1080/01430750.2010.9675106.
JEONG S J, LEE K S. An experimental study of a carbon dioxide-filled thermosyphon for acquisition of low-temperature waste energy [J]. International Journal of Energy Research, 2010, 34(5): 454–461. DOI: https://doi.org/10.1002/er.1649.
FRANCO A, FILIPPESCHI S. Experimental analysis of closed loop two phase thermosyphon (CLTPT) for energy systems [J]. Experimental Thermal and Fluid Science, 2013, 51: 302–311. DOI: https://doi.org/10.1016/j.expthermflusci.2013.08.013.
SALASOVICH J, BURCH J, BARKER G. Geographic constraints on passive solar domestic hot water systems due to pipe freezing [J]. Solar Energy, 2002, 73(6): 469–474. DOI: https://doi.org/10.1016/S0038-092X(03)00004-5.
CLOSE D J. The performance of solar water heaters with natural circulation [J]. Solar Energy, 1962, 6(1): 33–40. DOI: https://doi.org/10.1016/0038-092X(62)90096-8.
ONG K S. A finite-difference method to evaluate the thermal performance of a solar water heater [J]. Solar Energy, 1974, 16(3, 4): 137–147. DOI: https://doi.org/10.1016/0038-092X(74)90010-3.
KALOGIROU S A, PANTELIOU S. Thermosiphon solar domestic water heating systems: Long-term performance prediction using artificial neural networks [J]. Solar Energy, 2000, 69(2): 163–174. DOI: https://doi.org/10.1016/S0038-092X(00)00058-X.
VAXMAN M, SOKOLOV M. Effects of connecting pipes in thermosyphonic solar systems [J]. Solar Energy, 1986, 37(5): 323–330. DOI: https://doi.org/10.1016/0038-092X(86)90128-3.
BELESSIOTIS V, MATHIOULAKIS E. Analytical approach of thermosyphon solar domestic hot water system performance [J]. Solar Energy, 2002, 72(4): 307–315. DOI: https://doi.org/10.1016/S0038-092X(02)00011-7.
HOTTEL H C, WHILLIER A. Evaluation of flat-plate solar-collector performance [J]. Transaction of Conference on Use of Solar Energy, 1955, 3(2): 5057828.
HOTTEL H C, WOERTZ B B. Renewable energy [M]. London: Routledge, 2011.
LIU Guan-lin, E Jia-qiang, LIU Teng, ZUO Wei, ZHANG Qing-ling. Effects of different poses and wind speeds on flow field of dish solar concentrator based on virtual wind tunnel experiment with constant wind [J]. Journal of Central South University, 2018, 25(8): 1948–1957. DOI: https://doi.org/10.1007/s11771-018-3885-6.
CHENG Qing, ZHANG Xiao-song, XU Yao. A new solar coupling regeneration method for liquid desiccant air-conditioning system [J]. Journal of Central South University, 2014, 21(8): 3214–3224. DOI: https://doi.org/10.1007/s11771-014-2293-9.
KLEIN S, et al. TRNSYS 16 — A transient system simulation program, user manual [M]. Sol. Energy Lab, Madison University of Wisconsin-Madison, 2004.
TANG Run-sheng, CHENG Yan-bin, WU Mao-gang, LI Zhi-min, YU Ya-mei. Experimental and modeling studies on thermosiphon domestic solar water heaters with flat-plate collectors at clear nights [J]. Energy Conversion and Management, 2010, 51(12): 2548–2556. DOI: https://doi.org/10.1016/j.enconman.2010.04.015.
SHARIAH A M, ECEVIT A. Effect of hot water load temperature on the performance of a thermosyphon solar water heater with auxiliary electric heater [J]. Energy Conversion and Management, 1995, 36(5): 289–296. DOI: https://doi.org/10.1016/0196-8904(95)98894-S.
AMER E H, NAYAK J K, SHARMA G K. A new dynamic method for testing solar flat-plate collectors under variable weather [J]. Energy Conversion and Management, 1999, 40(8): 803–823. DOI: https://doi.org/10.1016/S0196-8904(98)00145-9.
KOFFI P ME, ANDOH H Y, GBAHA P, TOURÉ S, ADO G. Theoretical and experimental study of solar water heater with internal exchanger using thermosiphon system [J]. Energy Conversion and Management, 2008, 49(8): 2279–2290. DOI: https://doi.org/10.1016/j.enconman.2008.01.032.
KALOGIROU S A, PAPAMARCOU C. Modelling of a thermosyphon solar water heating system and simple model validation [J]. Renewable Energy, 2000, 21(3, 4): 471–493. DOI: https://doi.org/10.1016/S0960-1481(00)00086-0.
ANTONIADIS C N, MARTINOPOULOS G. Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS [J]. Renewable Energy, 2019, 137: 56–66. DOI: https://doi.org/10.1016/j.renene.2018.03.074.
WANG P, LIU D Y, XU C. Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams [J]. Applied Energy, 2013, 102: 449–460. DOI: https://doi.org/10.1016/j.apenergy.2012.07.026.
TAO W Q, HE Y L, WANG Q W, QU Z G, SONG F Q. A unified analysis on enhancing single phase convective heat transfer with field synergy principle [J]. International Journal of Heat and Mass Transfer, 2002, 45(24): 4871–4879. DOI: https://doi.org/10.1016/S0017-9310(02)00173-4.
AXTMANN M, POSER R, von WOLFERSDORF J, BOUCHEZ M. Endwall heat transfer and pressure loss measurements in staggered arrays of adiabatic pin fins [J]. Applied Thermal Engineering, 2016, 103: 1048–1056. DOI: https://doi.org/10.1016/j.applthermaleng.2016.04.066.
GHALANDARI M, MALEKI A, HAGHIGHI A, SAFDARI SHADLOO M, ALHUYI NAZARI M, TLILI I. Applications of nanofluids containing carbon nanotubes in solar energy systems: A review [J]. Journal of Molecular Liquids, 2020, 313: 113476. DOI: https://doi.org/10.1016/j.molliq.2020.113476.
SARAFRAZ M M, TLILI I, TIAN Zhe, BAKOURI M, SAFAEI M R, GOODARZI M. Thermal evaluation of graphene nanoplatelets nanofluid in a fast-responding HP with the potential use in solar systems in smart cities [J]. Applied Sciences, 2019, 9(10): 2101. DOI: https://doi.org/10.3390/app9102101.
OLIA H, TORABI M, BAHIRAEI M, AHMADI M H, GOODARZI M, SAFAEI M R. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: State-of-the-art [J]. Applied Sciences, 2019, 9(3): 463. DOI: https://doi.org/10.3390/app9030463.
MAITHANI R, KUMAR A, GHOLAMALI ZADEH P, SAFAEI M R, GHOLAMALIZADEH E. Empirical correlations development for heat transfer and friction factor of a solar rectangular air passage with spherical-shaped turbulence promoters [J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 1195–1212. DOI: https://doi.org/10.1007/s10973-019-08551-8.
SARAFRAZ M M, TLILI I, TIAN Zhe, BAKOURI M, SAFAEI M R. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM) [J]. Physica A: Statistical Mechanics and its Applications, 2019, 534: 122146. DOI: https://doi.org/10.1016/j.physa.2019.122146.
SAFAEI M R, GOSHAYESHI H R, CHAER I. Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM [J]. Energies, 2019, 12(10): 2002. DOI: https://doi.org/10.3390/en12102002.
KHODABANDEH E, SAFAEI M R, AKBARI S, AKBARI O A, ALRASHED A A A A. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: Geometric study [J]. Renewable Energy, 2018, 122: 1–16. DOI: https://doi.org/10.1016/j.renene.2018.01.023.
BIGLARIAN H, SAIDI M H, ABBASPOUR M. Economic and environmental assessment of a solar-assisted ground source heat pump system in a heating-dominated climate [J]. International Journal of Environmental Science and Technology, 2019, 16(7): 3091–3098. DOI: https://doi.org/10.1007/s13762-018-1673-3.
KALOGIROU S A. Solar energy engineering: Processes and systems: [M]. Second edition. Elsevier.
LIU B Y H, JORDAN R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation [J]. Solar Energy, 1960, 4(3): 1–19. DOI: https://doi.org/10.1016/0038-092X(60)90062-1.
SALOUX E, CANDANEDO J A. Model-based predictive control to minimize primary energy use in a solar district heating system with seasonal thermal energy storage [J]. Applied Energy, 2021, 291: 116840. DOI: https://doi.org/10.1016/j.apenergy.2021.116840.
Author information
Authors and Affiliations
Contributions
Hassan BIGLARIAN provided the concept and modeling the system in TRNSYS software package. Mohammad Mazidi SHARFABADI conducted the literature review and wrote the first draft of the manuscript. Mansour ALIZADEH supervised the study and Hossein GHARAEI edited the manuscript.
Corresponding author
Additional information
Conflict of interest
Hassan BIGLARIAN, Mohammad Mazidi SHARFABADI, Mansour ALIZADEH and Hossein GHARAEI declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Biglarian, H., Sharfabadi, M.M., Alizadeh, M. et al. Performance investigation of solar thermal collector with auxiliary heater for space heating. J. Cent. South Univ. 28, 3466–3476 (2021). https://doi.org/10.1007/s11771-021-4868-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11771-021-4868-6