[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Performance investigation of solar thermal collector with auxiliary heater for space heating

带辅助加热器的空间采暖太阳能集热器性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, the performance of a solar thermal system with a focus on space heating was investigated. A 70 m2 detached house was considered in the weather conditions of the city of Tehran, Iran. A thermosyphon solar water heater with a flat plate collector combined with an auxiliary electrical heater supplies the heating demand of the house. The proposed system was modeled and analyzed using TRNSYS software. In this regard, the TRNBuild module was employed for the building load calculation. The model has been simulated for one year of operation. The effects of the solar collector’s surface area and storage volume were assessed. The results show that for a solar collector with a 15 m2 surface area, the solar fraction is 0.29 in January, during which the solar radiation is the lowest. Using solar collectors of 10 m2 and 5 m2 surface areas, the solar fraction falls to 0.23 and 0.14, respectively in January. Besides, two cases of 150 L and 300 L storage tanks are taken into account. Eventually, it is found that using a 15 m2 solar collector and a 150 L storage tank can appropriately provide the building’s heating demand taking the thermal performance and economic aspects into consideration.

摘要

本文研究了空间采暖太阳能集热系统的性能。在伊朗德黑兰城市的天气条件下, 以一座70 m2 的独立住宅为研究对象。住宅的供暖需求由带有平板集热器和辅助电加热器的热虹吸太阳能热水器系 统供应。采用TRNSYS 软件对该系统进行建模和分析。采用TRNBuild 模块进行建筑荷载计算, 并对 该模型进行一年的运行模拟。评估了太阳能集热器表面积和存储体积的影响。结果表明:对于表面积为15 m2 的太阳能集热器,1 月份的太阳辐射率最低,为0.29。对于表面积为10 m2 和5 m2 的太阳能集热器, 1 月份的太阳辐射率分别降至0.23 和0.14。此外, 还考虑了150 L 和300 L 的储罐两种情况。最 终,考虑到热性能和成本,使用一个15 m2 的太阳能集热器和一个150 L 的储罐可以满足建筑的采暖需求。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KHAN N, KALAIR A, ABAS N, HAIDER A. Review of ocean tidal, wave and thermal energy technologies [J]. Renewable and Sustainable Energy Reviews, 2017, 72: 590–604. DOI: https://doi.org/10.1016/j.rser.2017.01.079.

    Article  Google Scholar 

  2. International Energy Agency. World energy outlook 2015 factsheet. Global energy trends to 2040. The energy Section. Climate chang run-up to COP21 [R]. Paris: OECD Publishing, 2015. DOI: https://doi.org/10.1787/20725302.

    Google Scholar 

  3. ZHENG Xue-qin, YAO Yi-ping. Multi-objective capacity allocation optimization method of photovoltaic EV charging station considering V2G [J]. Journal of Central South University, 2021, 28(2): 481–493. DOI: https://doi.org/10.1007/s11771-021-4616-y.

    Article  Google Scholar 

  4. LI Da-peng, WANG Yu-fan, LIU Gang, LIAO Sheng-ming, LIU Xian-ping. Effect of obstruction on thermal performance of solar water heaters [J]. Journal of Central South University, 2020, 27(4): 1273–1289. DOI: https://doi.org/10.1007/s11771-020-4366-2.

    Article  Google Scholar 

  5. ÜRGE-VORSATZ D, CABEZA L F, SERRANO S, BARRENECHE C, PETRICHENKO K. Heating and cooling energy trends and drivers in buildings [J]. Renewable and Sustainable Energy Reviews, 2015, 41: 85–98. DOI: https://doi.org/10.1016/j.rser.2014.08.039.

    Article  Google Scholar 

  6. JIN Nan, ZHAO Jing, ZHU Neng. Energy efficiency performance of multi-energy district heating and hot water supply system [J]. Journal of Central South University, 2012, 19(5): 1377–1382. DOI: https://doi.org/10.1007/s11771-012-1153-8.

    Article  Google Scholar 

  7. LIANG Ruo-bing, ZHANG Ji-li, ZHAO Liang, MA Liang-dong. Performance enhancement of filled-type solar collector with U-tube [J]. Journal of Central South University, 2015, 22(3): 1124–1131. DOI: https://doi.org/10.1007/s11771-015-2624-5.

    Article  Google Scholar 

  8. NAZARI M A, AHMADI M H, SADEGHZADEH M, SHAFII M B, GOODARZI M. A review on application of nanofluid in various types of heat pipes [J]. Journal of Central South University, 2019, 26(5): 1021–1041. DOI: https://doi.org/10.1007/s11771-019-4068-9.

    Article  Google Scholar 

  9. REDPATH D A G, LO S N G, EAMES P C. Experimental investigation and optimisation study of a direct thermosyphon heat-pipe evacuated tube solar water heater subjected to a northern maritime climate [J]. International Journal of Ambient Energy, 2010, 31(2): 91–100. DOI: https://doi.org/10.1080/01430750.2010.9675106.

    Article  Google Scholar 

  10. JEONG S J, LEE K S. An experimental study of a carbon dioxide-filled thermosyphon for acquisition of low-temperature waste energy [J]. International Journal of Energy Research, 2010, 34(5): 454–461. DOI: https://doi.org/10.1002/er.1649.

    Article  MathSciNet  Google Scholar 

  11. FRANCO A, FILIPPESCHI S. Experimental analysis of closed loop two phase thermosyphon (CLTPT) for energy systems [J]. Experimental Thermal and Fluid Science, 2013, 51: 302–311. DOI: https://doi.org/10.1016/j.expthermflusci.2013.08.013.

    Article  Google Scholar 

  12. SALASOVICH J, BURCH J, BARKER G. Geographic constraints on passive solar domestic hot water systems due to pipe freezing [J]. Solar Energy, 2002, 73(6): 469–474. DOI: https://doi.org/10.1016/S0038-092X(03)00004-5.

    Article  Google Scholar 

  13. CLOSE D J. The performance of solar water heaters with natural circulation [J]. Solar Energy, 1962, 6(1): 33–40. DOI: https://doi.org/10.1016/0038-092X(62)90096-8.

    Article  Google Scholar 

  14. ONG K S. A finite-difference method to evaluate the thermal performance of a solar water heater [J]. Solar Energy, 1974, 16(3, 4): 137–147. DOI: https://doi.org/10.1016/0038-092X(74)90010-3.

    Article  Google Scholar 

  15. KALOGIROU S A, PANTELIOU S. Thermosiphon solar domestic water heating systems: Long-term performance prediction using artificial neural networks [J]. Solar Energy, 2000, 69(2): 163–174. DOI: https://doi.org/10.1016/S0038-092X(00)00058-X.

    Article  Google Scholar 

  16. VAXMAN M, SOKOLOV M. Effects of connecting pipes in thermosyphonic solar systems [J]. Solar Energy, 1986, 37(5): 323–330. DOI: https://doi.org/10.1016/0038-092X(86)90128-3.

    Article  Google Scholar 

  17. BELESSIOTIS V, MATHIOULAKIS E. Analytical approach of thermosyphon solar domestic hot water system performance [J]. Solar Energy, 2002, 72(4): 307–315. DOI: https://doi.org/10.1016/S0038-092X(02)00011-7.

    Article  Google Scholar 

  18. HOTTEL H C, WHILLIER A. Evaluation of flat-plate solar-collector performance [J]. Transaction of Conference on Use of Solar Energy, 1955, 3(2): 5057828.

    Google Scholar 

  19. HOTTEL H C, WOERTZ B B. Renewable energy [M]. London: Routledge, 2011.

    Google Scholar 

  20. LIU Guan-lin, E Jia-qiang, LIU Teng, ZUO Wei, ZHANG Qing-ling. Effects of different poses and wind speeds on flow field of dish solar concentrator based on virtual wind tunnel experiment with constant wind [J]. Journal of Central South University, 2018, 25(8): 1948–1957. DOI: https://doi.org/10.1007/s11771-018-3885-6.

    Article  Google Scholar 

  21. CHENG Qing, ZHANG Xiao-song, XU Yao. A new solar coupling regeneration method for liquid desiccant air-conditioning system [J]. Journal of Central South University, 2014, 21(8): 3214–3224. DOI: https://doi.org/10.1007/s11771-014-2293-9.

    Article  Google Scholar 

  22. KLEIN S, et al. TRNSYS 16 — A transient system simulation program, user manual [M]. Sol. Energy Lab, Madison University of Wisconsin-Madison, 2004.

  23. TANG Run-sheng, CHENG Yan-bin, WU Mao-gang, LI Zhi-min, YU Ya-mei. Experimental and modeling studies on thermosiphon domestic solar water heaters with flat-plate collectors at clear nights [J]. Energy Conversion and Management, 2010, 51(12): 2548–2556. DOI: https://doi.org/10.1016/j.enconman.2010.04.015.

    Article  Google Scholar 

  24. SHARIAH A M, ECEVIT A. Effect of hot water load temperature on the performance of a thermosyphon solar water heater with auxiliary electric heater [J]. Energy Conversion and Management, 1995, 36(5): 289–296. DOI: https://doi.org/10.1016/0196-8904(95)98894-S.

    Article  Google Scholar 

  25. AMER E H, NAYAK J K, SHARMA G K. A new dynamic method for testing solar flat-plate collectors under variable weather [J]. Energy Conversion and Management, 1999, 40(8): 803–823. DOI: https://doi.org/10.1016/S0196-8904(98)00145-9.

    Article  Google Scholar 

  26. KOFFI P ME, ANDOH H Y, GBAHA P, TOURÉ S, ADO G. Theoretical and experimental study of solar water heater with internal exchanger using thermosiphon system [J]. Energy Conversion and Management, 2008, 49(8): 2279–2290. DOI: https://doi.org/10.1016/j.enconman.2008.01.032.

    Article  Google Scholar 

  27. KALOGIROU S A, PAPAMARCOU C. Modelling of a thermosyphon solar water heating system and simple model validation [J]. Renewable Energy, 2000, 21(3, 4): 471–493. DOI: https://doi.org/10.1016/S0960-1481(00)00086-0.

    Article  Google Scholar 

  28. ANTONIADIS C N, MARTINOPOULOS G. Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS [J]. Renewable Energy, 2019, 137: 56–66. DOI: https://doi.org/10.1016/j.renene.2018.03.074.

    Article  Google Scholar 

  29. WANG P, LIU D Y, XU C. Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams [J]. Applied Energy, 2013, 102: 449–460. DOI: https://doi.org/10.1016/j.apenergy.2012.07.026.

    Article  Google Scholar 

  30. TAO W Q, HE Y L, WANG Q W, QU Z G, SONG F Q. A unified analysis on enhancing single phase convective heat transfer with field synergy principle [J]. International Journal of Heat and Mass Transfer, 2002, 45(24): 4871–4879. DOI: https://doi.org/10.1016/S0017-9310(02)00173-4.

    Article  Google Scholar 

  31. AXTMANN M, POSER R, von WOLFERSDORF J, BOUCHEZ M. Endwall heat transfer and pressure loss measurements in staggered arrays of adiabatic pin fins [J]. Applied Thermal Engineering, 2016, 103: 1048–1056. DOI: https://doi.org/10.1016/j.applthermaleng.2016.04.066.

    Article  Google Scholar 

  32. GHALANDARI M, MALEKI A, HAGHIGHI A, SAFDARI SHADLOO M, ALHUYI NAZARI M, TLILI I. Applications of nanofluids containing carbon nanotubes in solar energy systems: A review [J]. Journal of Molecular Liquids, 2020, 313: 113476. DOI: https://doi.org/10.1016/j.molliq.2020.113476.

    Article  Google Scholar 

  33. SARAFRAZ M M, TLILI I, TIAN Zhe, BAKOURI M, SAFAEI M R, GOODARZI M. Thermal evaluation of graphene nanoplatelets nanofluid in a fast-responding HP with the potential use in solar systems in smart cities [J]. Applied Sciences, 2019, 9(10): 2101. DOI: https://doi.org/10.3390/app9102101.

    Article  Google Scholar 

  34. OLIA H, TORABI M, BAHIRAEI M, AHMADI M H, GOODARZI M, SAFAEI M R. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: State-of-the-art [J]. Applied Sciences, 2019, 9(3): 463. DOI: https://doi.org/10.3390/app9030463.

    Article  Google Scholar 

  35. MAITHANI R, KUMAR A, GHOLAMALI ZADEH P, SAFAEI M R, GHOLAMALIZADEH E. Empirical correlations development for heat transfer and friction factor of a solar rectangular air passage with spherical-shaped turbulence promoters [J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 1195–1212. DOI: https://doi.org/10.1007/s10973-019-08551-8.

    Article  Google Scholar 

  36. SARAFRAZ M M, TLILI I, TIAN Zhe, BAKOURI M, SAFAEI M R. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using response surface methodology (RSM) [J]. Physica A: Statistical Mechanics and its Applications, 2019, 534: 122146. DOI: https://doi.org/10.1016/j.physa.2019.122146.

    Article  Google Scholar 

  37. SAFAEI M R, GOSHAYESHI H R, CHAER I. Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM [J]. Energies, 2019, 12(10): 2002. DOI: https://doi.org/10.3390/en12102002.

    Article  Google Scholar 

  38. KHODABANDEH E, SAFAEI M R, AKBARI S, AKBARI O A, ALRASHED A A A A. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: Geometric study [J]. Renewable Energy, 2018, 122: 1–16. DOI: https://doi.org/10.1016/j.renene.2018.01.023.

    Article  Google Scholar 

  39. BIGLARIAN H, SAIDI M H, ABBASPOUR M. Economic and environmental assessment of a solar-assisted ground source heat pump system in a heating-dominated climate [J]. International Journal of Environmental Science and Technology, 2019, 16(7): 3091–3098. DOI: https://doi.org/10.1007/s13762-018-1673-3.

    Article  Google Scholar 

  40. KALOGIROU S A. Solar energy engineering: Processes and systems: [M]. Second edition. Elsevier.

  41. LIU B Y H, JORDAN R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation [J]. Solar Energy, 1960, 4(3): 1–19. DOI: https://doi.org/10.1016/0038-092X(60)90062-1.

    Article  Google Scholar 

  42. SALOUX E, CANDANEDO J A. Model-based predictive control to minimize primary energy use in a solar district heating system with seasonal thermal energy storage [J]. Applied Energy, 2021, 291: 116840. DOI: https://doi.org/10.1016/j.apenergy.2021.116840.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hassan BIGLARIAN provided the concept and modeling the system in TRNSYS software package. Mohammad Mazidi SHARFABADI conducted the literature review and wrote the first draft of the manuscript. Mansour ALIZADEH supervised the study and Hossein GHARAEI edited the manuscript.

Corresponding author

Correspondence to Mohammad Mazidi Sharfabadi.

Additional information

Conflict of interest

Hassan BIGLARIAN, Mohammad Mazidi SHARFABADI, Mansour ALIZADEH and Hossein GHARAEI declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biglarian, H., Sharfabadi, M.M., Alizadeh, M. et al. Performance investigation of solar thermal collector with auxiliary heater for space heating. J. Cent. South Univ. 28, 3466–3476 (2021). https://doi.org/10.1007/s11771-021-4868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4868-6

Key words

关键词

Navigation