[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Although numerous methods have been developed for human face recognition, little investigation is focused on the human face recognition across plastic surgery and also single-exemplar face recognition. In this article, we present a new face recognition algorithm using patch manifold learning under plastic surgery conditions when only a single training exemplar per enrolled person exists. In the presented method, a face image is divided into a collection of patches which have no overlapping that are considered as a manifold. Then, we formulate face recognition under plastic surgery conditions using a single exemplar of each person as a problem of manifold–manifold matching to maximize the margin of manifold patches. A complete experimental investigation is done using the database of plastic surgery, AR and also FERET face databases. Experimental results indicate the superiority of the presented algorithm for face recognition in single-sample databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nappi, M., Ricciardi, S., Tistarelli, M.: Deceiving faces: when plastic surgery challenges face recognition. Image Vis. Comput. 54, 71–82 (2016)

    Article  Google Scholar 

  2. He, X., et al.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  3. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognit. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  4. Torkhani, G., et al.: A 3D–2D face recognition method based on extended Gabor wavelet combining curvature and edge detection. Signal Image Video Process. 11(5), 969–976 (2017)

    Article  Google Scholar 

  5. Yang, J., et al.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)

    Article  Google Scholar 

  6. Jin, W., et al.: Illumination robust face recognition using random projection and sparse representation. Signal Image Video Process. 12(4), 721–729 (2018)

    Article  Google Scholar 

  7. Hu, H.: Orthogonal neighborhood preserving discriminant analysis for face recognition. Pattern Recognit. 41(6), 2045–2054 (2008)

    Article  MATH  Google Scholar 

  8. Ding, C., et al.: Single sample per person face recognition with KPCANet and a weighted voting scheme. Signal Image Video Process. 11(7), 1213–1220 (2017)

    Article  Google Scholar 

  9. Bhatt, H.S., et al.: Evolutionary granular approach for recognizing faces altered due to plastic surgery. In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011). IEEE (2011)

  10. Khedgaonkar, R.S., Singh, K.R., Gawande, S.P.: Identifying resemblance in local plastic surgical faces using near sets for face recognition. In: 2011 International Conference on Communication Systems and Network Technologies (CSNT). IEEE (2011)

  11. De Marsico, M., et al.: Robust face recognition after plastic surgery using region-based approaches. Pattern Recognit. 48(4), 1261–1276 (2015)

    Article  Google Scholar 

  12. Liu, X., Shan, S., Chen, X.: Face recognition after plastic surgery: a comprehensive study. In: Asian Conference on Computer Vision. Springer, Berlin (2012)

  13. Singh, R., Vatsa, M., Noore, A. (2009) Effect of plastic surgery on face recognition: a preliminary study. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2009. CVPR Workshops 2009. IEEE (2009)

  14. Singh, R., et al.: Plastic surgery: a new dimension to face recognition. IEEE Trans. Inf. Forensics Secur. 5(3), 441–448 (2010)

    Article  Google Scholar 

  15. Aggarwal, G., et al.: A sparse representation approach to face matching across plastic surgery. In: 2012 IEEE Workshop on Applications of Computer Vision (WACV). IEEE (2012)

  16. Huang, G., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

  17. Suri, S., et al.: On matching faces with alterations due to plastic surgery and disguise. In: 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS). IEEE (2018)

  18. Sabharwal, T., Gupta, R.: Human identification after plastic surgery using region based score level fusion of local facial features. J. Inf. Secur. Appl. 48, 102373 (2019)

    Google Scholar 

  19. Sabharwal, T., et al.: Recognition of surgically altered face images: an empirical analysis on recent advances. Artif. Intell. Rev. 52(2), 1009–1040 (2019)

    Article  Google Scholar 

  20. Yu, W., Teng, X., Liu, C.: Face recognition using discriminant locality preserving projections. Image Vis. Comput. 24(3), 239–248 (2006)

    Article  Google Scholar 

  21. Fu, Y., Yan, S., Huang, T.S.: Classification and feature extraction by simplexization. IEEE Trans. Inf. Forensics Secur. 3(1), 91–100 (2008)

    Article  Google Scholar 

  22. Yan, S., et al.: A parameter-free framework for general supervised subspace learning. IEEE Trans. Inf. Forensics Secur. 2(1), 69–76 (2007)

    Article  Google Scholar 

  23. Chen, H.-T., Chang, H.-W., Liu, T.-L.: Local discriminant embedding and its variants. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol 2. IEEE (2005)

  24. Lu, J., Tan, Y.-P., Wang, G.: Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 39–51 (2013)

    Article  Google Scholar 

  25. Yan, H., et al.: Multi-feature multi-manifold learning for single-sample face recognition. Neurocomputing 143, 134–143 (2014)

    Article  Google Scholar 

  26. Liu, H.-H., Hsu, S.-C., Huang, C.-L.: Single-sample-per-person-based face recognition using fast Discriminative Multi-manifold Analysis. In: Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit and Conference (APSIPA). IEEE (2014)

  27. Martinez, A.M.: The AR face database. CVC Technical Report 24 (1998)

  28. Phillips, P.J., et al.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  29. Deng, J., et al. (2009) Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE

  30. Bhatt, H.S., et al.: Recognizing surgically altered face images using multiobjective evolutionary algorithm. IEEE Trans. Inf. Forensics Secur. 8(1), 89–100 (2013)

    Article  Google Scholar 

  31. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurements of Facial Movements. Consulting Psychologists Press, Washington (1978)

    Google Scholar 

  32. Kanan, H.R., Faez, K., Gao, Y.: Face recognition using adaptively weighted patch PZM array from a single exemplar image per person. Pattern Recognit. 41(12), 3799–3812 (2008)

    Article  MATH  Google Scholar 

  33. Chan, T.-H., et al.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, M., Van Gool, L., Zhang, L.: Sparse variation dictionary learning for face recognition with a single training sample per person. In: Proceedings of the IEEE International Conference on Computer Vision (2013)

  35. Wright, J., et al.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2008)

    Article  Google Scholar 

  36. Wu, J., Zhou, Z.-H.: Face recognition with one training image per person. Pattern Recognit. Lett. 23(14), 1711–1719 (2002)

    Article  MATH  Google Scholar 

  37. Chen, S., Zhang, D., Zhou, Z.-H.: Enhanced (PC) 2 A for face recognition with one training image per person. Pattern Recognit. Lett. 25(10), 1173–1181 (2004)

    Article  Google Scholar 

  38. Zhang, D., Zhou, Z.-H.: (2D) 2PCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 69(1), 224–231 (2005)

    Article  Google Scholar 

  39. Tan, X., et al.: Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft k-NN ensemble. IEEE Trans. Neural Netw. 16(4), 875–886 (2005)

    Article  Google Scholar 

  40. Zhang, D., Chen, S., Zhou, Z.-H.: A new face recognition method based on SVD perturbation for single example image per person. Appl. Math. Comput. 163(2), 895–907 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gottumukkal, R., Asari, V.K.: An improved face recognition technique based on modular PCA approach. Pattern Recognit. Lett. 25(4), 429–436 (2004)

    Article  Google Scholar 

  42. Chen, S., Liu, J., Zhou, Z.-H.: Making FLDA applicable to face recognition with one sample per person. Pattern Recognit. 37(7), 1553–1555 (2004)

    Article  Google Scholar 

  43. Deng, W., et al.: Robust, accurate and efficient face recognition from a single training image: A uniform pursuit approach. Pattern Recognit. 43(5), 1748–1762 (2010)

    Article  MATH  Google Scholar 

  44. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Computer Vision-ECCV 2004, pp. 469–481 (2004)

  45. Zhang, W., et al. Local gabor binary pattern histogram sequence (lgbphs): A novel non-statistical model for face representation and recognition. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 1. IEEE (2005)

  46. Zhang, W., et al.: Efficient feature extraction for image classification. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007. IEEE (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Rashidy Kanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadi, M., Rashidy Kanan, H. & Kalantari, M. Face recognition using patch manifold learning across plastic surgery from a single training exemplar per enrolled person. SIViP 14, 1071–1077 (2020). https://doi.org/10.1007/s11760-020-01642-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-020-01642-2

Keywords

Navigation