[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

High-resolution direct position determination based on eigenspace using a single moving ULA

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

High-resolution direct position determination (DPD) using a single moving uniform linear array is considered. In this paper, we firstly propose an improved DPD model based on eigenspace. This model exploits both signal subspaces and noise subspaces which results in higher resolution than those utilizing minimum variance distortionless response, multiple signal classification or subspace fitting. In order to achieve rapid and high precision localization, a hybrid calculation algorithm which combines particle swarm optimization using a ring topology and Broyden–Fletcher–Goldfarb–Shanno is proposed. This algorithm can extract multiple emitter positions with less computational complexity. We combine the improved DPD model and the hybrid calculation algorithm and examine its performance via numerical simulations. The results show that the proposed method can reach Cramer–Rao lower bound when the signal-to-noise ratio is moderate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amar, A., Weiss, A.J.: Advances in direct position determination. In: Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal, pp. 584–588. https://doi.org/10.1109/SAM.2004.1503016

  2. Amar, A., Weiss, A.J.: Localization of narrowband radio emitters based on doppler frequency shifts. IEEE Trans. Signal Process. 56(11), 5500–5508 (2008). https://doi.org/10.1109/TSP.2008.929655

    Article  MathSciNet  MATH  Google Scholar 

  3. Bialer, O., Raphaeli, D., Weiss, A.J.: Maximum-likelihood direct position estimation in dense multipath. IEEE Trans. Veh. Technol. 62(5), 2069–2079 (2013). https://doi.org/10.1109/TVT.2012.2236895

    Article  Google Scholar 

  4. Capon, J.: High-resolution frequency-wavenumber spectrum analysis. P. IEEE 57(8), 1408–1418 (1969)

    Article  Google Scholar 

  5. Carter, G.C.: Coherence and Time Delay Estimation. IEEE Press, New York, NY (1993)

    Google Scholar 

  6. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002). https://doi.org/10.1109/4235.985692

    Article  Google Scholar 

  7. Demissie, B., Oispuu, M., Ruthotto, E.: Localization of multiple sources with a moving array using subspace data fusion. In: 2008 11th International Conference on Information Fusion, pp. 1–7

  8. Grenier, D., Elahian, B., Blanchard-Lapierre, A.: Joint delay and direction of arrivals estimation in mobile communications. Signal Image Video Process. 10(1), 45–54 (2016). https://doi.org/10.1007/s11760-014-0700-1

    Article  Google Scholar 

  9. Ho, K.C., Chan, Y.T.: Geolocation of a known altitude object from TDOA and FDOA measurements. IEEE Trans. Aerosp. Electron. Syst. 33(3), 770–783 (1997). https://doi.org/10.1109/7.599239

    Article  Google Scholar 

  10. Li, X.D.: Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14, 150–169 (2010)

    Article  Google Scholar 

  11. Oispuu, M.: Direct state determination of multiple sources with intermittent emission. In: 2009 17th European Signal Processing Conference, pp. 1948–1952

  12. Oispuu, M., Nickel, U.: Direct detection and position determination of multiple sources with intermittent emission. Signal Process. 90(12), 3056–3064 (2010)

    Article  MATH  Google Scholar 

  13. Qin, T., Lu, Z., Ba, B., Wang, D.: A decoupled direct positioning algorithm for strictly noncircular sources based on doppler shift and angle of arrival. IEEE Access 6, 344449–34461 (2018). https://doi.org/10.1109/ACCESS.2018.2849574

    Google Scholar 

  14. Tirer, T., Weiss, A.J.: High resolution direct position determination of radio frequency sources. IEEE Signal Process. Lett. 23(2), 192–196 (2016). https://doi.org/10.1109/LSP.2015.2503921

    Article  Google Scholar 

  15. Tirer, T., Weiss, A.J.: High resolution localization of narrowband radio emitters based on doppler frequency shifts. Signal Process. 141, 288–298 (2017). https://doi.org/10.1016/j.sigpro.2017.06.019

    Article  Google Scholar 

  16. Tzafri, L., Weiss, A.J.: High-resolution direct position determination using MVDR. IEEE Trans. Wireless Commun. 15(9), 6449–6461 (2016). https://doi.org/10.1109/TWC.2016.2585116

    Article  Google Scholar 

  17. Tzoreff, E., Tzoreff, E., Weiss, A.J.: Expectation-maximization algorithm for direct position determination. Signal Process. 133, 32–39 (2017). https://doi.org/10.1016/j.sigpro.2016.10.015

    Article  MATH  Google Scholar 

  18. Ulman, R., Geraniotis, E.: Wideband TDOA/FDOA processing using summation of short-time CAF’s. IEEE Trans. Signal Process. 47(12), 3193–3200 (1999)

    Article  Google Scholar 

  19. Weiss, A.J.: Direct position determination of narrowband radio frequency transmitters. IEEE Signal Process Lett. 11(5), 513–516 (2004). https://doi.org/10.1109/LSP.2004.826501

    Article  Google Scholar 

  20. Weiss, A.J.: Direct geolocation of wideband emitters based on delay and doppler. IEEE Trans. Signal Process. 59(6), 2513–2521 (2011). https://doi.org/10.1109/TSP.2011.2128311

    Article  MathSciNet  MATH  Google Scholar 

  21. Weiss, A.J., Amar, A.: Direct position determination of multiple radio signals. EURASIP J. Adv. Signal Process. 2005(1), 37–49 (2005)

    Article  MATH  Google Scholar 

  22. Wu, G., Zhang, M., Guo, F., Xiao, X.: Direct position determination of coherent pulse trains based on doppler and doppler rate. Electronics 7(10), 1–16 (2018). https://doi.org/10.3390/electronics7100262

    Article  Google Scholar 

  23. Wu, L., Liu, Z., Jiang, W.: A direction finding method for spatial optical beam-forming network based on sparse bayesian learning. Signal Image Video Process. 11(2), 1–7 (2016)

    Google Scholar 

  24. Zhang, X.F., Lv, W., Shi, Y., Zhao, R.N., Xu, D.Z.: A novel DOA estimation algorithm based on eigen space. In: International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2007, pp. 551–554. IEEE (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Z. Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G.Z., Zhang, M. & Guo, F.C. High-resolution direct position determination based on eigenspace using a single moving ULA. SIViP 13, 887–894 (2019). https://doi.org/10.1007/s11760-019-01425-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01425-4

Keywords

Navigation