[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Sampling with level set for pigmented skin lesion segmentation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Melanoma is the deadliest form of skin cancer, and its incidence is increasing. The first step in automated melanoma analysis of dermoscopy images is to segment the area of the lesion from the surrounding skin. To improve the accuracy and adaptability of segmentation, an algorithm called sampling with level set by integrating color and texture (SLS-CT) is proposed that not only designs a new way to incorporate textural and color features in the definition of the energy functional but also utilizes an index called texture level, proposed in this work, to automatically decide the weight of each feature in the combined energies. First, at the preprocessing stage, hair and black frame removal is applied, and a potential lesion area is then obtained using Otsu thresholding and entropy maximization. Thereafter, the probability distribution of prior color in this potential lesion area is calculated as well. Second, Gabor wavelet-based texture features are extracted and integrated with the prior color into the evolving energies of the level set based on the texture level. To achieve global optimization, a Markov chain Monte Carlo sampling approach guided by the combined energy is adopted in evolving the level set, which ultimately defines a border in the image to segment a lesion from normal skin. Finally, morphological operations are used for postprocessing. The experimental results of the proposed algorithm are compared with those of other state-of-the-art algorithms, demonstrating that the proposed algorithm outperforms the other tested ones in terms of accuracy and adaptability to different databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Celebi, M., Mendonca, T., Marques, J.: From dermoscopy to mobile teledermatology. In: Emre Celebi, M., Mendonca, T., Marques J.S. (eds.) Dermoscopy Image Analysis, pp. 385–418. CRC Press, Boca Raton (2015). https://www.taylorfrancis.com/books/9781482253269

    Chapter  Google Scholar 

  2. Oliveira, R.B., Papa, J.P., Pereira, A.S., Tavares, J.M.R.S.: Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput. Appl. 29, 613–636 (2018)

    Article  Google Scholar 

  3. Celebi, M.E., Iyatomi, H., Schaefer, G., Stoecker, W.V.: Lesion border detection in dermoscopy images. Comput. Med. Imaging Graph. 33, 148–153 (2009)

    Article  Google Scholar 

  4. Korotkov, K., Garcia, R.: Computerized analysis of pigmented skin lesions: a review. Artif. Intell. Med. 56, 69–90 (2012)

    Article  Google Scholar 

  5. Filho, M., Ma, Z., Tavares, J.M.: A review of the quantification and classification of pigmented skin lesions: from dedicated to hand-held devices. J. Med. Syst. 39, 1–12 (2015)

    Article  Google Scholar 

  6. Oliveira, R.B., Filho, M.E., Ma, Z., Pereira, A.S.: Computational methods for the image segmentation of pigmented skin lesions. Comput. Methods Progr. Biomed. 131, 127–141 (2016)

    Article  Google Scholar 

  7. Zhou, H., Schaefer, G., Sadka, A.H., Celebi, M.E.: Anisotropic mean shift based fuzzy C-means segmentation of dermoscopy images. IEEE J. Select. Top. Signal Process. 3, 26–34 (2009)

    Article  Google Scholar 

  8. Ashour, A.S., Hawas, A.R., Guo, Y., Wahba, M.A.: A novel optimized neutrosophic k-means using genetic algorithm for skin lesion detection in dermoscopy images. SIViP 12, 1311–1318 (2018)

    Article  Google Scholar 

  9. Dey, N., Rajinikanth, V., Ashour, A.S., Tavares, J.M.R.S.: Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10, 51 (2018)

    Article  Google Scholar 

  10. Oliveira, R.B., Marranghello, N., Pereira, A.S., Tavares, J.M.R.S.: A computational approach for detecting pigmented skin lesions in macroscopic images. Expert Syst Appl Int J 61, 53–63 (2016)

    Article  Google Scholar 

  11. Zhou, H., Li, X., Schaefer, G., Celebi, M.E., Miller, P.: Mean shift based gradient vector flow for image segmentation. Comput. Vis. Image Underst. 117, 1004–1016 (2013)

    Article  Google Scholar 

  12. Li, W., Li, F., Du, J.: A level set image segmentation method based on a cloud model as the priori contour. Signal Image Video Process. (2018). https://doi.org/10.1007/s11760-018-1334-5

  13. Ma, Z., Tavares, J.M.R.S.: Effective features to classify skin lesions in dermoscopic images. Expert Syst. Appl. 84, 92–101 (2017)

    Article  Google Scholar 

  14. Oliveira, R.B., Pereira, A.S., Tavares, J.M.R.S.: Pattern recognition in macroscopic and dermoscopic images for skin lesion diagnosis. In: VipIMAGE 2017, Lecture Notes in Computational Vision and Biomechanics, vol. 27, pp. 504–514. Springer, Cham (2018)

  15. Roth, H.R., Lu, L., Farag, A., Shin, H.C., Liu, J., Turkbey, E.B., Summers, R.M.: DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation. In: Medical Image Computing and Computer-Assisted Intervention, vol. 9349, pp. 556–564. Munich (2015)

  16. Hu, P., Yang, T.J.: Pigmented skin lesions detection using random forest and wavelet based texture. In: Proceeding of SPIE 10024, pp. 1X1–1X7 (2016)

  17. Jafari, M.H., Nasresfahani, E., Karimi, N., Soroushmehr, S.M.R., Samavi, S., Najarian, K.: Extraction of skin lesions from non-dermoscopic images using deep learning. CoRR abs/1609.02374 (2016)

  18. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  MATH  Google Scholar 

  19. Silveira, M., Nascimento, J.C., Marques, J.S., Marcal, A.R.S., Mendonca, T., Yamauchi, S., Maeda, J., Rozeira, J.: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J. Selected Top. Signal Process. 3, 35–45 (2009)

    Article  Google Scholar 

  20. Erkol, B., Moss, R.H., Stanley, R.J., Stoecker, W.V., Hvatum, E.: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Res. Technol. 11, 17–26 (2005)

    Article  Google Scholar 

  21. Nascimento, J.C., Marques, J.S.: Adaptive snakes using the EM algorithm. IEEE Trans. Image Process. 14, 1678–1686 (2005)

    Article  Google Scholar 

  22. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  23. Ma, Z., Tavares, J.M.: A novel approach to segment skin lesions in dermoscopic images based on a deformable model. IEEE J. Biomed. Health Inf. 20, 615–623 (2016)

    Article  Google Scholar 

  24. Chang, J., Fisher, J.W.: Efficient MCMC sampling with implicit shape representations. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2081–2088. Providence (2011)

  25. Oliveira, R.B., Pereira, A.S., Tavares, J.M.R.S.: Computational diagnosis of skin lesions from dermoscopic images using combined features. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3439-8

  26. Celebi, M.E., Wen, Q., Iyatomi, H., Shimizu, K., Zhou, H., Schaefer, G.: A state-of-the-art survey on lesion border detection in dermoscopy images. In: Celebi, M.E., Mendonca, T., Marques, J.S. (eds.) Dermoscopy Image Analysis, pp. 97–129. CRC Press, Boca Raton (2015)

    Chapter  Google Scholar 

  27. Celebi, M., Iyatomi, H., Schaefer, G., Stoecker, W.: Approximate lesion localization in dermoscopy images. Skin Res. Technol. 15, 314–322 (2010)

    Article  Google Scholar 

  28. Lee, T., Ng, V., Gallagher, R., Coldman, A., Mclean, D.: DullRazor: a software approach to hair removal from images. Comput. Biol. Med. 27, 533–543 (1997)

    Article  Google Scholar 

  29. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40, 200–210 (2013)

    Article  Google Scholar 

  30. Mokrzycki, W.S., Tatol, M.: Color difference Delta E—A survey. Mach. Graph. Vis. 20, 383–411 (2011)

    Google Scholar 

  31. Schaefer, G., Rajab, M.I., Celebi, M.E., Iyatomi, H.: Colour and contrast enhancement for improved skin lesion segmentation. Comput. Med. Imaging Graph. 35, 99–104 (2011)

    Article  Google Scholar 

  32. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314 (2004)

    Article  Google Scholar 

  33. An, N.-Y., Pun, C.-M.: Color image segmentation using adaptive color quantization and multiresolution texture characterization. SIViP 8, 943–954 (2014)

    Article  Google Scholar 

  34. Lee, T.S.: Image representation using 2D Gabor wavelet. IEEE Trans. Pattern Anal. Mach. Intell. 18, 959–971 (2002)

    Google Scholar 

  35. Tsai, S.C., Tzeng, W.G., Wu, H.L.: On the Jensen–Shannon divergence and variational distance. IEEE Trans. Inform. Theory 51, 3333–3336 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Baumgartner, J., Flesia, A.G., Gimenez, J., Pucheta, J.: A new image segmentation framework based on two-dimensional hidden Markov models. Integr. Comput. Aided Eng. 23, 1–13 (2016)

    Article  Google Scholar 

  37. Celebi, E.M., Quan, W., Sae, H., Hitoshi, I., Gerald, S.: Lesion border detection in dermoscopy images using ensembles of thresholding methods. Skin Res. Technol. 19, e252–e258 (2013)

    Article  Google Scholar 

  38. Mendonca, T., Ferreira, P.M., Marques, J.S., Marcal, A.R.S., Rozeira, J.: PH2—A dermoscopic image database for research and benchmarking. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5437–5440 (2013). http://www.fc.up.pt/addi/ph2%20database.html

  39. Celebi, M., Kingravi, H., Aslandogan, Y., Stoecker, W., Moss, R., Malters, J., Grichnik, J., Marghoob, A., Rabinovitz, H., Menzies, S.: Border detection in dermoscopy images using statistical region merging. Skin Res. Technol. 14, 347–353 (2008)

    Article  Google Scholar 

  40. Ahn, E., Kim, J., Bi, L., Kumar, A., Li, C., Fulham, M., Feng, D.D.: Saliency-based lesion segmentation via background detection in dermoscopic images. IEEE J. Biomed. Health Inf. 21, 1685–1693 (2017)

    Article  Google Scholar 

  41. Garnavi, R., Aldeen, M., Celebi, M.E., Varigos, G., Finch, S.: Border detection in dermoscopy images using hybrid thresholding on optimized color channels. Comput. Med. Imaging Graph. 35, 105–115 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Guangdong Provincial Key Laboratory of Digital Signal and Image Processing Techniques (2013GDDSIPL-03), the Guangxi Natural Science Foundation (2018JJB170004), the Guangxi young and middle-aged teachers basic ability promotion project (2017KY0247), the Project of Cultivating a Thousand Young and Middle-aged Teachers in Guangxi Universities and the Guangxi Key Laboratory Fund of Embedded Technology and Intelligent System under Grant No. 2018A-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhun Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Chen, Y., Lu, J. et al. Sampling with level set for pigmented skin lesion segmentation. SIViP 13, 813–821 (2019). https://doi.org/10.1007/s11760-019-01417-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01417-4

Keywords

Navigation