[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Face age classification based on a deep hybrid model

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Face age estimation, a computer vision task facing numerous challenges due to its potential applications in identity authentication, human–computer interface, video retrieval and robot vision, has been attracting increasing attention. In recent years, the deep convolutional neural networks (DCNN) have achieved state-of-the-art performance in age classification of face images. We propose a deep hybrid framework for age classification by exploiting DCNN as the raw feature extractor along with several effective methods, including fine-tuning the DCNN into a fine-tuned deep age feature extraction (FDAFE) model, introducing a new method of feature extracting, applying the maximum joint probability classifier to age classification and a strategy to incorporate information from face images more effectively to improve estimation capabilities further. In addition, we pre-process the original image to represent age information more accurately. Based on the discriminative and compact framework, state-of-the-art performance on several face image data sets has been achieved in terms of classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)

    Article  Google Scholar 

  2. Sun, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996. Montreal, Quebec, Canada (2014)

  3. Zhao, M., Song, B., Zhang, Y., Qin, H.: Face verification based on deep Bayesian convolutional neural network in unconstrained environment. Signal Image Video Process. (2017). https://doi.org/10.1007/s11760-017-1223-31

  4. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3476–3483. IEEE, Portland (2013)

  5. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701–1708. IEEE, Columbus (2014)

  6. Huang, G.B., Lee, H., Learned-Miller, E.: Learning hierarchical representations for face verification with convolutional deep belief networks. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2518–2525. IEEE, Providence (2012)

  7. Levi, G., Hassncer, T.: Age and gender classification using convolutional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 34–42. IEEE, Boston (2015)

  8. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. arXiv preprint arXiv:1310.1531 (2013)

  9. Yan, C., Lang, C., Wang, T., Du, X., Zhang, C.: Age estimation based on convolutional neural network. In: Advances in Multimedia Information Processing C PCM 2014, pp. 211–220. Springer, Cham (2014)

  10. Yang, X., Gao, B.B., Xing, C., Huo, Z.W., Wei, X.S., Zhou, Y., Wu, J., Geng, X.: Deep label distribution learning for apparent age estimation. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 344–350. IEEE, Santiago (2015)

  11. Dong, Y., Liu, Y., Lian, S.: Automatic age estimation based on deep learning algorithm. Neurocomputing 187, 4–10 (2016)

    Article  Google Scholar 

  12. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference, pp. 1–12. BMVC, Swansea (2015)

  13. Rothe, R., Timofte, R., Van Gool, L.: DEX: deep expectation of apparent age from a single image. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 10–15. (2015)

  14. Lanitis, A.: Face and gesture recognition working group. http://www-prima.inrialpes.fr/FGnet/html/benchmarks.html

  15. Ricanek, K., Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pp. 341–345. IEEE, Southampton (2006)

  16. Chen, B.-C., Chen, C.-S., Hsu, W.H.: Cross-age reference coding for age-invariant face recognition and retrieval. In: Computer Vision C ECCV 2014, pp. 768–783. Springer, Cham (2014)

  17. Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9(12), 2170–2179 (2014)

    Article  Google Scholar 

  18. Meynet, J., Popovici, V., Thiran, J.-P.: Mixtures of boosted classifiers for frontal face detection. Signal Image Video Process. 1(1), 29–38 (2007)

    Article  MATH  Google Scholar 

  19. Marsico, M.D., Nappi, M., Riccio, D., Tortora, G.: Entropy-based template analysis in face biometric identification systems. Signal Image Video Process. 7(3), 493–505 (2013)

    Article  Google Scholar 

  20. Tang, Z., Wu, X., Leng, X., Chen, W.: A fast face recognition method based on fractal coding. Signal Image Video Process. 11(7), 1221–1228 (2017)

    Article  Google Scholar 

  21. Bian, P., Xie, Z., Jin, Y.: Multi-task feature learning-based improved supervised descent method for facial landmark detection. Signal Image Video Process. 12(1), 17–24 (2018)

    Article  Google Scholar 

  22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  23. Bicego, M., Lagorio, A., Grosso, E., Tistarelli, M.: On the use of SIFT features for face authentication. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06), pp. 35–35. IEEE, New York (2006)

  24. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  25. Bosch, A., Zisserman, A., Muñoz, X.: Scene classification using a hybrid generative/discriminative approach. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 712–727 (2008)

    Article  Google Scholar 

  26. Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C.: Face recognition from caption-based supervision. Int. J. Comput. Vis. 96(1), 64–82 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liao, S., Jain, A.K., Li, S.Z.: Partial face recognition: alignment-free approach. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1193–1205 (2013)

    Article  Google Scholar 

  28. Yan, K., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 506–513. IEEE, Washington, DC (2004)

  29. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), pp. 886–893. IEEE, San Diego (2005)

  30. Shan, S., Yang, P., Chen, X., Gao, W.: Adaboost Gabor Fisher classifier for face recognition. In: International Conference on Analysis and Modelling of Faces and Gestures, pp. 279–292. Springer, Heidelberg (2005)

  31. Meyers, E., Wolf, L.: Using biologically inspired features for face processing. Int. J. Comput. Vis. 76(1), 93–104 (2008)

    Article  Google Scholar 

  32. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  33. Zhang, G., Huang, X., Li, S.Z., Wang, Y., Wu, X.: Boosting local binary pattern (LBP)-based face recognition. In: Advances in Biometric Person Authentication, pp. 179–186. Springer, Heidelberg, Berlin (2004)

  34. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  35. Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Proceedings of International Conference on Biometrics, pp. 828–837. Springer, Berlin (2007)

  36. Yang, M., Zhang, L., Shiu, S.C.K., Zhang, D.: Monogenic binary coding: an efficient local feature extraction approach to face recognition. IEEE Trans. Inf. Forensics Secur. 7(6), 1738–1751 (2012)

    Article  Google Scholar 

  37. Vu, N.-S., Dee, H.M., Caplier, A.: Face recognition using the POEM descriptor. Pattern Recognit. 45(7), 2478–2488 (2012)

    Article  Google Scholar 

  38. Lei, Z., Pietikäinen, M., Li, S.Z.: Learning discriminant face descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 289–302 (2014)

    Article  Google Scholar 

  39. Yu, W., Gan, L., Yang, S., Ding, Y., Jiang, P., Wang, J., Li, S.: An improved LBP algorithm for texture and face classification. Signal Image Video Process. 8(1), 155–161 (2014)

    Article  Google Scholar 

  40. Sao, A.K., Yegnanarayana, B., Kumar, B.V.K.V.: Significance of image representation for face verification. Signal Image Video Process. 1(3), 225–237 (2007)

    Article  MATH  Google Scholar 

  41. Chang, K.Y., Chen, C.S., Hung, Y.P.: A ranking approach for human ages estimation based on face images. In: 2010 International Conference on Pattern Recognition, pp. 3396–3399. IEEE, Istanbul (2010)

  42. Chang, K.Y., Chen, C.S., Hung, Y.P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 585–592. IEEE, Colorado Springs (2011)

  43. Choi, S.E., Lee, Y.J., Lee, S.J., Park, K.R., Kim, J.: Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognit. 44(6), 1262–1281 (2011)

    Article  MATH  Google Scholar 

  44. Yang, P., Zhong, L., Metaxas, D.: Ranking model for facial age estimation. In: 20th International Conference on Pattern Recognition, pp. 3404–3407. IEEE, Istanbul (2010)

  45. Luu, K., Seshadri, K., Savvides, M., Bui, T.D., Suen, C.Y.: Contourlet appearance model for facial age estimation. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–8. IEEE, Washington, DC (2011)

  46. Gao, P.X.: Facial age estimation using clustered multi-task support vector regression machine. In: 2012 International Conference on Pattern Recognition (ICPR2012), pp. 541–544. IEEE, Tsukuba (2012)

  47. Chao, W.-L., Liu, J.-Z., Ding, J.-J.: Facial age estimation based on label-sensitive learning and age-oriented regression. Pattern Recognit. 46(3), 628–641 (2013)

    Article  Google Scholar 

  48. Liu, J., Ma, Y., Duan, L., Wang, F., Liu, Y.: Hybrid constraint SVR for facial age estimation. Signal Process. 94(1), 576–582 (2014)

    Article  Google Scholar 

  49. Ma, Y., Liu, J., Yang, X., Liu, Y., Zheng, N.: Double layer multiple task learning for age estimation with insufficient training samples. Neurocomputing 147(1), 380–386 (2015)

    Article  Google Scholar 

  50. Pontes, J.K., Britto, A.S., Fookes, C., Koerich, A.L.: A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recognit. 54(C), 34–51 (2016)

    Article  Google Scholar 

  51. Wang, S., Tao, D., Yang, J.: Relative attribute SVM+ learning for age estimation. IEEE Trans. Cybern. 46(3), 827–839 (2016)

    Article  Google Scholar 

  52. Geng, X., Smith-Miles, K., Zhou, Z.-H.: Facial age estimation by learning from label distributions. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI’10), pp. 451–456. AAAI, Atlanta (2010)

  53. Geng, X., Wang, Q., Xia, Y.: Facial age estimation by adaptive label distribution learning. In: 22nd International Conference on Pattern Recognition, pp. 4465–4470. IEEE, Stockholm (2014)

  54. Yang, X., Geng, X., Zhou, D.: Sparsity conditional energy label distribution learning for age estimation. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 2259–2265. AAAI, New York (2016)

  55. He, Z., Li, X., Zhang, Z., Wu, F., Geng, X., Zhang, Y., Yang, M.H., Zhuang, Y.: Data-dependent label distribution learning for age estimation. IEEE Trans. Image Process. 26(8), 3846–3858 (2017)

    Article  MathSciNet  Google Scholar 

  56. Yi, D., Lei, Z., Li, S.Z.: Age estimation by multi-scale convolutional network. In: 2014 Asian Conference on Computer Vision (ACCV), pp. 144–158. Springer, Cham (2014)

  57. Ranjan, R., Zhou, S., Chen, J.C., Kumar, A., Alavi, A., Patel, V.M., Chellappa, R.: Unconstrained age estimation with deep convolutional neural networks. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 351–359. IEEE, Santiago (2015)

  58. Kuang, Z., Huang, C., Zhang, W.: Deeply learned rich coding for cross-dataset facial age estimation. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 338–343. IEEE, Santiago (2015)

  59. Escalera, S., Fabian, J., Pardo, P., Bar, X., Gonzlez, J., Escalante, H.J., Misevic, D., Steiner, U., Guyon, I.: ChaLearn looking at people 2015: apparent age and cultural event recognition datasets and results. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 243–251. IEEE, Santiago (2015)

  60. Liu, X., Li, S., Kan, M., Zhang, J., Wu, S., Liu, W., Han, H., Shan, S., Chen, X.: AgeNet: deeply learned regressor and classifier for robust apparent age estimation. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 16–24. IEEE, Santiago (2015)

  61. Malli, R.C., Aygn, M., Ekenel, H.K.: Apparent age estimation using ensemble of deep learning models. In: 2016 Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 714–721. IEEE, Santiago (2016)

  62. Abousaleh, F.S., Lim, T., Cheng, W.-H., Yu, N.-H., Hossain, M.A., Alhamid, M.F.: A novel comparative deep learning framework for facial age estimation. EURASIP J. Image Video Process. 2016(1), 47 (2016)

    Article  Google Scholar 

  63. Hu, Z., Wen, Y., Wang, J., Wang, M., Hong, R., Yan, S.: Facial age estimation with age difference. IEEE Trans. Image Process. 26(7), 3087–3097 (2017)

    Article  MathSciNet  Google Scholar 

  64. Mathias, M., Benenson, R., Pedersoli, M., Van Gool, L.: Face detection without bells and whistles. In: 2014 European Conference on Computer Vision (ECCV), pp. 720–735. Springer, Cham (2014)

  65. King, D.E.: Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 10(3), 1755–1758 (2009)

    Google Scholar 

  66. Wu, X., He, R., Sun, Z.: A lightened CNN for deep face representation. arXiv preprint arXiv:1511.02683 (2015)

  67. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Int. Conf. Neural Inf. Process. Syst. 60(2), 1097–1105 (2012)

    Google Scholar 

  68. Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 689–692. ACM, New York (2015)

  69. Cai, S., Zhang, L., Zuo, W., Feng, X.: A probabilistic collaborative representation based approach for pattern classification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2950–2959. IEEE, Las Vegas (2016)

  70. Waqas, J., Yi, Z., Zhang, L.: Collaborative neighbor representation based classification using l2-minimization approach. Pattern Recognit. Lett. 34(2), 201–208 (2013)

    Article  Google Scholar 

  71. Yang, W., Wang, Z., Sun, C.: A collaborative representation based projections method for feature extraction. Pattern Recognit. 48(1), 20–27 (2015)

    Article  Google Scholar 

  72. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: IEEE International Conference on Computer Vision (ICCV), pp. 471–478. IEEE, Barcelona (2011)

  73. Chang, C.-C., Lin,C.-J.: LIBSVM: a library for support vector machines.software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm(2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexiang Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Fan, C., Yang, H. et al. Face age classification based on a deep hybrid model. SIViP 12, 1531–1539 (2018). https://doi.org/10.1007/s11760-018-1309-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1309-6

Keywords

Navigation