Abstract
Face age estimation, a computer vision task facing numerous challenges due to its potential applications in identity authentication, human–computer interface, video retrieval and robot vision, has been attracting increasing attention. In recent years, the deep convolutional neural networks (DCNN) have achieved state-of-the-art performance in age classification of face images. We propose a deep hybrid framework for age classification by exploiting DCNN as the raw feature extractor along with several effective methods, including fine-tuning the DCNN into a fine-tuned deep age feature extraction (FDAFE) model, introducing a new method of feature extracting, applying the maximum joint probability classifier to age classification and a strategy to incorporate information from face images more effectively to improve estimation capabilities further. In addition, we pre-process the original image to represent age information more accurately. Based on the discriminative and compact framework, state-of-the-art performance on several face image data sets has been achieved in terms of classification accuracy.
Similar content being viewed by others
References
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. 35(4), 399–458 (2003)
Sun, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996. Montreal, Quebec, Canada (2014)
Zhao, M., Song, B., Zhang, Y., Qin, H.: Face verification based on deep Bayesian convolutional neural network in unconstrained environment. Signal Image Video Process. (2017). https://doi.org/10.1007/s11760-017-1223-31
Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3476–3483. IEEE, Portland (2013)
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701–1708. IEEE, Columbus (2014)
Huang, G.B., Lee, H., Learned-Miller, E.: Learning hierarchical representations for face verification with convolutional deep belief networks. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2518–2525. IEEE, Providence (2012)
Levi, G., Hassncer, T.: Age and gender classification using convolutional neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 34–42. IEEE, Boston (2015)
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition. arXiv preprint arXiv:1310.1531 (2013)
Yan, C., Lang, C., Wang, T., Du, X., Zhang, C.: Age estimation based on convolutional neural network. In: Advances in Multimedia Information Processing C PCM 2014, pp. 211–220. Springer, Cham (2014)
Yang, X., Gao, B.B., Xing, C., Huo, Z.W., Wei, X.S., Zhou, Y., Wu, J., Geng, X.: Deep label distribution learning for apparent age estimation. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 344–350. IEEE, Santiago (2015)
Dong, Y., Liu, Y., Lian, S.: Automatic age estimation based on deep learning algorithm. Neurocomputing 187, 4–10 (2016)
Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference, pp. 1–12. BMVC, Swansea (2015)
Rothe, R., Timofte, R., Van Gool, L.: DEX: deep expectation of apparent age from a single image. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 10–15. (2015)
Lanitis, A.: Face and gesture recognition working group. http://www-prima.inrialpes.fr/FGnet/html/benchmarks.html
Ricanek, K., Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pp. 341–345. IEEE, Southampton (2006)
Chen, B.-C., Chen, C.-S., Hsu, W.H.: Cross-age reference coding for age-invariant face recognition and retrieval. In: Computer Vision C ECCV 2014, pp. 768–783. Springer, Cham (2014)
Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9(12), 2170–2179 (2014)
Meynet, J., Popovici, V., Thiran, J.-P.: Mixtures of boosted classifiers for frontal face detection. Signal Image Video Process. 1(1), 29–38 (2007)
Marsico, M.D., Nappi, M., Riccio, D., Tortora, G.: Entropy-based template analysis in face biometric identification systems. Signal Image Video Process. 7(3), 493–505 (2013)
Tang, Z., Wu, X., Leng, X., Chen, W.: A fast face recognition method based on fractal coding. Signal Image Video Process. 11(7), 1221–1228 (2017)
Bian, P., Xie, Z., Jin, Y.: Multi-task feature learning-based improved supervised descent method for facial landmark detection. Signal Image Video Process. 12(1), 17–24 (2018)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Bicego, M., Lagorio, A., Grosso, E., Tistarelli, M.: On the use of SIFT features for face authentication. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06), pp. 35–35. IEEE, New York (2006)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Bosch, A., Zisserman, A., Muñoz, X.: Scene classification using a hybrid generative/discriminative approach. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 712–727 (2008)
Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C.: Face recognition from caption-based supervision. Int. J. Comput. Vis. 96(1), 64–82 (2012)
Liao, S., Jain, A.K., Li, S.Z.: Partial face recognition: alignment-free approach. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1193–1205 (2013)
Yan, K., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 506–513. IEEE, Washington, DC (2004)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’05), pp. 886–893. IEEE, San Diego (2005)
Shan, S., Yang, P., Chen, X., Gao, W.: Adaboost Gabor Fisher classifier for face recognition. In: International Conference on Analysis and Modelling of Faces and Gestures, pp. 279–292. Springer, Heidelberg (2005)
Meyers, E., Wolf, L.: Using biologically inspired features for face processing. Int. J. Comput. Vis. 76(1), 93–104 (2008)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Zhang, G., Huang, X., Li, S.Z., Wang, Y., Wu, X.: Boosting local binary pattern (LBP)-based face recognition. In: Advances in Biometric Person Authentication, pp. 179–186. Springer, Heidelberg, Berlin (2004)
Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)
Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Proceedings of International Conference on Biometrics, pp. 828–837. Springer, Berlin (2007)
Yang, M., Zhang, L., Shiu, S.C.K., Zhang, D.: Monogenic binary coding: an efficient local feature extraction approach to face recognition. IEEE Trans. Inf. Forensics Secur. 7(6), 1738–1751 (2012)
Vu, N.-S., Dee, H.M., Caplier, A.: Face recognition using the POEM descriptor. Pattern Recognit. 45(7), 2478–2488 (2012)
Lei, Z., Pietikäinen, M., Li, S.Z.: Learning discriminant face descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 289–302 (2014)
Yu, W., Gan, L., Yang, S., Ding, Y., Jiang, P., Wang, J., Li, S.: An improved LBP algorithm for texture and face classification. Signal Image Video Process. 8(1), 155–161 (2014)
Sao, A.K., Yegnanarayana, B., Kumar, B.V.K.V.: Significance of image representation for face verification. Signal Image Video Process. 1(3), 225–237 (2007)
Chang, K.Y., Chen, C.S., Hung, Y.P.: A ranking approach for human ages estimation based on face images. In: 2010 International Conference on Pattern Recognition, pp. 3396–3399. IEEE, Istanbul (2010)
Chang, K.Y., Chen, C.S., Hung, Y.P.: Ordinal hyperplanes ranker with cost sensitivities for age estimation. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 585–592. IEEE, Colorado Springs (2011)
Choi, S.E., Lee, Y.J., Lee, S.J., Park, K.R., Kim, J.: Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recognit. 44(6), 1262–1281 (2011)
Yang, P., Zhong, L., Metaxas, D.: Ranking model for facial age estimation. In: 20th International Conference on Pattern Recognition, pp. 3404–3407. IEEE, Istanbul (2010)
Luu, K., Seshadri, K., Savvides, M., Bui, T.D., Suen, C.Y.: Contourlet appearance model for facial age estimation. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–8. IEEE, Washington, DC (2011)
Gao, P.X.: Facial age estimation using clustered multi-task support vector regression machine. In: 2012 International Conference on Pattern Recognition (ICPR2012), pp. 541–544. IEEE, Tsukuba (2012)
Chao, W.-L., Liu, J.-Z., Ding, J.-J.: Facial age estimation based on label-sensitive learning and age-oriented regression. Pattern Recognit. 46(3), 628–641 (2013)
Liu, J., Ma, Y., Duan, L., Wang, F., Liu, Y.: Hybrid constraint SVR for facial age estimation. Signal Process. 94(1), 576–582 (2014)
Ma, Y., Liu, J., Yang, X., Liu, Y., Zheng, N.: Double layer multiple task learning for age estimation with insufficient training samples. Neurocomputing 147(1), 380–386 (2015)
Pontes, J.K., Britto, A.S., Fookes, C., Koerich, A.L.: A flexible hierarchical approach for facial age estimation based on multiple features. Pattern Recognit. 54(C), 34–51 (2016)
Wang, S., Tao, D., Yang, J.: Relative attribute SVM+ learning for age estimation. IEEE Trans. Cybern. 46(3), 827–839 (2016)
Geng, X., Smith-Miles, K., Zhou, Z.-H.: Facial age estimation by learning from label distributions. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI’10), pp. 451–456. AAAI, Atlanta (2010)
Geng, X., Wang, Q., Xia, Y.: Facial age estimation by adaptive label distribution learning. In: 22nd International Conference on Pattern Recognition, pp. 4465–4470. IEEE, Stockholm (2014)
Yang, X., Geng, X., Zhou, D.: Sparsity conditional energy label distribution learning for age estimation. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 2259–2265. AAAI, New York (2016)
He, Z., Li, X., Zhang, Z., Wu, F., Geng, X., Zhang, Y., Yang, M.H., Zhuang, Y.: Data-dependent label distribution learning for age estimation. IEEE Trans. Image Process. 26(8), 3846–3858 (2017)
Yi, D., Lei, Z., Li, S.Z.: Age estimation by multi-scale convolutional network. In: 2014 Asian Conference on Computer Vision (ACCV), pp. 144–158. Springer, Cham (2014)
Ranjan, R., Zhou, S., Chen, J.C., Kumar, A., Alavi, A., Patel, V.M., Chellappa, R.: Unconstrained age estimation with deep convolutional neural networks. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 351–359. IEEE, Santiago (2015)
Kuang, Z., Huang, C., Zhang, W.: Deeply learned rich coding for cross-dataset facial age estimation. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 338–343. IEEE, Santiago (2015)
Escalera, S., Fabian, J., Pardo, P., Bar, X., Gonzlez, J., Escalante, H.J., Misevic, D., Steiner, U., Guyon, I.: ChaLearn looking at people 2015: apparent age and cultural event recognition datasets and results. In: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), pp. 243–251. IEEE, Santiago (2015)
Liu, X., Li, S., Kan, M., Zhang, J., Wu, S., Liu, W., Han, H., Shan, S., Chen, X.: AgeNet: deeply learned regressor and classifier for robust apparent age estimation. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 16–24. IEEE, Santiago (2015)
Malli, R.C., Aygn, M., Ekenel, H.K.: Apparent age estimation using ensemble of deep learning models. In: 2016 Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 714–721. IEEE, Santiago (2016)
Abousaleh, F.S., Lim, T., Cheng, W.-H., Yu, N.-H., Hossain, M.A., Alhamid, M.F.: A novel comparative deep learning framework for facial age estimation. EURASIP J. Image Video Process. 2016(1), 47 (2016)
Hu, Z., Wen, Y., Wang, J., Wang, M., Hong, R., Yan, S.: Facial age estimation with age difference. IEEE Trans. Image Process. 26(7), 3087–3097 (2017)
Mathias, M., Benenson, R., Pedersoli, M., Van Gool, L.: Face detection without bells and whistles. In: 2014 European Conference on Computer Vision (ECCV), pp. 720–735. Springer, Cham (2014)
King, D.E.: Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 10(3), 1755–1758 (2009)
Wu, X., He, R., Sun, Z.: A lightened CNN for deep face representation. arXiv preprint arXiv:1511.02683 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Int. Conf. Neural Inf. Process. Syst. 60(2), 1097–1105 (2012)
Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 689–692. ACM, New York (2015)
Cai, S., Zhang, L., Zuo, W., Feng, X.: A probabilistic collaborative representation based approach for pattern classification. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2950–2959. IEEE, Las Vegas (2016)
Waqas, J., Yi, Z., Zhang, L.: Collaborative neighbor representation based classification using l2-minimization approach. Pattern Recognit. Lett. 34(2), 201–208 (2013)
Yang, W., Wang, Z., Sun, C.: A collaborative representation based projections method for feature extraction. Pattern Recognit. 48(1), 20–27 (2015)
Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: IEEE International Conference on Computer Vision (ICCV), pp. 471–478. IEEE, Barcelona (2011)
Chang, C.-C., Lin,C.-J.: LIBSVM: a library for support vector machines.software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm(2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, L., Fan, C., Yang, H. et al. Face age classification based on a deep hybrid model. SIViP 12, 1531–1539 (2018). https://doi.org/10.1007/s11760-018-1309-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-018-1309-6