Abstract
Technological advances in compact and portable cameras have enabled the generation of large volumes of video sequences. However, videos captured by amateurs are subject to unwanted vibrations due to camera shaking. To overcome such problem, video stabilization aims to remove undesired motion from videos to enhance visual quality, improving applications such as detection and tracking of objects. In this work, we develop and analyze a consensual method for combining a set of local feature techniques for camera motion estimation. Several video sequences are used to evaluate the proposed methodology. Experimental results demonstrate the effectiveness of the combination method over individual local feature approaches.
Similar content being viewed by others
References
Amanatiadis, A.A., Andreadis, I.: Digital image stabilization by independent component analysis. IEEE Trans. Instrum. Meas. 59(7), 1755–1763 (2010)
Chang, J.-Y., Hu, W.-F., Cheng, M.-H., Chang, B.-S.: Digital image translational and rotational motion stabilization using optical flow technique. IEEE Trans. Consum. Electron. 48(1), 108–115 (2002)
Ertürk, S.: Real-Time digital image stabilization using kalman filters. Real-Time Imaging 8(4), 317–328 (2002)
Jia, R., Zhang, H., Wang, L., Li, J.: Digital image stabilization based on phase correlation. In: International Conference on Artificial Intelligence and Computational Intelligence, vol. 3, pp. 485–489. IEEE (2009)
Ko, S.-J., Lee, S.-H., Lee, K.-H.: Digital image stabilizing algorithms based on bit-plane matching. IEEE Trans. Consum. Electron. 44(3), 617–622 (1998)
Kumar, S., Azartash, H., Biswas, M., Nguyen, T.: Real-time affine global motion estimation using phase correlation and its application for digital image stabilization. IEEE Trans. Image Process. 20(12), 3406–3418 (2011)
Lin, C.-T., Hong, C.-T., Yang, C.-T.: Real-time digital image stabilization system using modified proportional integrated controller. IEEE Trans. Circuits Syst. Video Technol. 19(3), 427–431 (2009)
Marcenaro, L., Vernazza, G., Regazzoni, C.S.: Image stabilization algorithms for video-surveillance applications. In: International Conference on Image Processing, vol. 1, pp. 349–352. IEEE (2001)
Morimoto, C., Chellappa, R.: Fast electronic digital image stabilization. In: 13th International Conference on Pattern Recognition, vol. 3, pp. 284–288. IEEE (1996)
Ryu, Y.G., Chung, M.J.: Robust online digital image stabilization based on point-feature trajectory without accumulative global motion estimation. IEEE Signal Process. Lett. 19(4), 223–226 (2012)
Battiato, S., Gallo, G., Puglisi, G., Scellato, S.: SIFT features tracking for video stabilization. In: 14th International Conference on Image Analysis and Processing, pp. 825–830. IEEE (2007)
Shen, Y., Guturu, P., Damarla, T., Buckles, B.P., Namuduri, K.R.: Video stabilization using principal component analysis and scale invariant feature transform in particle filter framework. IEEE Trans. Consum. Electron. 55(3), 1714–1721 (2009)
Liu, S., Yuan, L., Tan, P., Sun, J.: Bundled camera paths for video stabilization. ACM Trans. Graph. 32(4), 78 (2013)
Zheng, Q., Yang, M.: A video stabilization method based on inter-frame image matching score. Glob. J. Comput. Sci. Technol. 17, 41–46 (2017)
Zheng, X., Shaohui, C., Gang, W., Jinlun, L.: Video stabilization system based on speeded-up robust features. In: International Industrial Informatics and Computer Engineering Conference, (2015)
Kumar, R., Azam, A., Gupta, S., Venkatesh, K.S.: Video stabilization using regularity of energy flow. Signal Image Video Process. 11(8), 1519–1526 (2017)
Shukla, D., Jha, R.K.: A robust video stabilization technique using integral frame projection warping. Signal Image Video Process. 9(6), 1287–1297 (2015)
Umnyashkin, S., Sharonov, I.: Motion compensation in video compression using hexagonal blocks. Signal Image Video Process. 9(1), 213–223 (2015)
Xu, Z.: Consistent image alignment for video mosaicing. Signal Image Video Process. 7(1), 129–135 (2013)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)
Agrawal, M., Konolige, K., Blas, M.R.: Censure: center surround extremas for realtime feature detection and matching. In: European Conference on Computer Vision, pp. 102–115. Springer, (2008)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. 9th European Conference on Computer Vision, pp. 430–443 (2006)
Szeliski, R.: Computer vision: algorithms and applications. Springer, Heidelberg (2010)
Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 510–517. IEEE (2012)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, p. 50. Citeseer, (1988)
Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: International Conference on Computer Vision, pp. 2548–2555. IEEE (2011)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)
Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)
Gales, G., Crouzil, A., Chambon, S.: Complementarity of feature point detectors. In: International Conference on Computer Vision Theory and Applications, pp. 334–339, Angers, France, (2010)
Bhowmik, N., Gouet-Brunet, V., Wei, L., Bloch, G.: Adaptive and optimal combination of local features for image retrieval. In: International Conference on Multimedia Modeling, pp. 76–88. Springer, (2017)
Li, S., Yuan, L., Sun, J., Quan, L.: Dual-feature warping-based motion model estimation. In: IEEE International Conference on Computer Vision, pp. 4283–4291 (2015)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Grundmann, M., Kwatra, V., Essa, I.: Auto-Directed video stabilization with robust l1 optimal camera paths. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Morimoto, C., Chellappa, R.: Evaluation of image stabilization algorithms, In: DARPA Image Understanding, Workshop pp. 295–302 (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
e Souza, M.R., Pedrini, H. Combination of local feature detection methods for digital video stabilization. SIViP 12, 1513–1521 (2018). https://doi.org/10.1007/s11760-018-1307-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-018-1307-8