[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Sparse representation-based hyperspectral image classification

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper presents an approach for hyperspectral image classification using contextual sparse coefficients based on sparse representations. The main idea is that the sparse coefficients obtained through sparse representation-based modelling of the hyperspectral images contain discriminative characters which can be utilized for hyperspectral image processing tasks, such as classifications. Moreover, such discriminative features can be enhanced by incorporating the contextual information in the sparse coefficient domain. The proposed method starts with finding a representative spectral dictionary using the training data. Sparse coding is then applied to obtain the sparse coefficients. This is followed by a contextual transform performed in the sparse coefficient domain to incorporate the spatial information. Finally, the contextual sparse coefficients are used as feature vectors for training traditional classifiers, namely SVMs and kNN in our case. The experimental results conducted on a number of hyperspectral data sets confirm the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The data sets are freely available at: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Proc. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  2. Awate, S., Koushik, N.: Robust dictionary learning on the Hilbert sphere in kernel feature space. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2016, vol. 9851, pp. 731–748. Springer, Cham (2016)

    Google Scholar 

  3. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  4. Blanzieri, E., Melgani, F.: Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans. Geosci. Remote Sens. 46(6), 1804–1811 (2008)

    Article  Google Scholar 

  5. Camps-Valls, G., Gomez-Chova, L., Muñoz-Marí, J., Vila-Francís, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3(1), 93–97 (2006)

    Article  Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  7. Charles, A., Olshausen, B., Rozell, C.: Learning sparse codes for hyperspectral imagery. IEEE J. Sel. Top. Signal Process. 5(5), 963–978 (2011)

    Article  Google Scholar 

  8. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)

  10. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximation. Constr. Approx. 13, 57–98 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Engan, K., Aase, S., Husøy, J.: Method of optimal directions for frame design. In: Proceedings of the ICASSP ’99 (Phoenix, USA), pp. 2443–2446 (1999)

  12. Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)

    Article  Google Scholar 

  13. Goetz, A.F.H.: Three decades of hyperspectral remote sensing of the earth: a personal view. Remote Sens. Environ. 113, S5–S16 (2009)

    Article  Google Scholar 

  14. Green, R.O., Eastwood, M.L., Sarture, C.M., Chrien, T.G., Aronsson, M., Chippendale, B.J., Faust, J.A., Pavri, B.E., Chovit, C.J., Solis, M., Olah, M.R., Williams, O.: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65(3), 227–248 (1998)

    Article  Google Scholar 

  15. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: 26th International Conference on Machine Learning, Montreal, Canada (2009)

  16. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Mallat, S., Zhang, Z.: Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal Proc. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  18. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  19. Mercier, G., Lenon, M.: Support vector machines for hyperspectral image classification with spectral-based kernels. In: 2003 IEEE InternationalGeoscience and Remote Sensing Symposium, IGARSS 2003, vol 1, pp. 288–290 (2003)

  20. Olshausen, B., Field, D.: Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis. Res. 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  21. Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, 110–122 (2009)

    Article  Google Scholar 

  22. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  23. Soltani-Farani, A., Rabiee, H.R., Hosseini, S.A.: Spatial-aware dictionary learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53(1), 527–541 (2013)

    Article  Google Scholar 

  24. Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation: Part I: greedy pursuit. Signal Process. 86(3), 572–588 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Celik, T. Sparse representation-based hyperspectral image classification. SIViP 12, 1009–1017 (2018). https://doi.org/10.1007/s11760-018-1249-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-018-1249-1

Keywords

Navigation