[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A multi-resolution and adaptive 3-D image denoising framework with applications in medical imaging

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Due to recent increase in the usage of 3-D magnetic resonance images (MRI) and analysis of functional magnetic resonance images, research on 3-D image processing becomes important. Observed 3-D images often contain noise which should be removed in such a way that important image features, e.g., edges, edge structures, and other image details should be preserved, so that subsequent image analyses are reliable. Most image denoising methods in the literature are for 2-D images. However, their direct generalizations to 3-D images cannot preserve complicated edge structures well. Because, the edge structures in a 3-D edge surface can be much more complicated than the edge structures in a 2-D edge curve. Moreover, the amount of smoothing should be determined locally, depending on local image features and local signal to noise ratio, which is much more challenging in 3-D images due to large number of voxels. This paper proposes an efficient 3-D image denoising procedure based on local clustering of the voxels. This method provides a framework for determining the size of bandwidth and the amount of smoothing locally by empirical procedures. Numerical studies and a real MRI denoising show that it works well in many medical image denoising problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arivazhagan, S., Sugitha, N., Vijay, A.: A novel image denoising scheme based on fusing multiresolution and spatial filters. Signal Image Video Process. 9(4), 885–892 (2015)

    Article  Google Scholar 

  2. Barash, D.: A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Trans. Pattern Anal. Mach. Intell. 24, 844–847 (2002)

    Article  Google Scholar 

  3. Besag, J.: On the statistical analysis of dirty pictures (with discussion). J. R. Stat. Soc. (Ser. B) 48, 259–302 (1986)

    MATH  Google Scholar 

  4. BrainWeb. http://brainweb.bic.mni.mcgill.ca/brainweb/

  5. Buades, B., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, G.S., Yu, B., Vetterli, M.: Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. Image Process. 9(9), 1522–1531 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chu, C.K., Glad, I.K., Godtliebsen, F., Marron, J.S.: Edge-preserving smoothers for image processing (with discussion). J. Am. Stat. Assoc. 93, 526–556 (1998)

    Article  MATH  Google Scholar 

  8. Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27, 425–441 (2008)

    Article  Google Scholar 

  9. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  10. Gijbels, I., Lambert, A., Qiu, P.: Edge-preserving image denoising and estimation of discontinuous surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1075–1087 (2006)

    Article  Google Scholar 

  11. Godtliebsen, F., Sebastiani, G.: Statistical methods for noisy images with discontinuities. J. Appl. Stat. 21, 459–477 (1994)

    Article  Google Scholar 

  12. Gudbjartsson, H., Patz, S.: The noisy distribution of noisy MRI data. Magn. Resonan. Med. 34, 910915 (1995)

    Google Scholar 

  13. Hall, P., Qiu, P.: Blind deconvolution and deblurring in image analysis. Stat. Sin. 17, 14831509 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Hillebrand, M., Müller, C.H.: Outlier robust corner-preserving methods for reconstructing noisy images. Ann. Stat. 35, 132–165 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hostalkova, E., Oldrich, V., Prochazka, A.: Multi-dimensional biomedical image de-noising using Haar transform. In: Proceedings of the 15th International Conference on Digital Signal Processing, pp. 175–178, Cardiff, UK (2007)

  16. Katkovnik, V., Egiazarian, K., Astola, J.: Local Approximation Techniques in Signal and Image Processing. SPIE Press book, Bellingham (2006)

    Book  MATH  Google Scholar 

  17. Keeling, S.: Total variation based convex filters for medical imaging. Appl. Math. Comput. 139(1), 101–119 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Kumar, B.K.S.: Image denoising based on non-local means filter and its method noise thresholding. Signal Image Video Process. 7(6), 1211–1227 (2013)

    Article  Google Scholar 

  19. Lu, H., Jui-Hsi, C., Han, G., Li, L., Liang, Z.: A 3D distance-weighted Wiener filter for Poisson noise reduction in sinogram space for SPECT imaging. SPIE Proc. Ser. 4320, 905–913 (2001)

    Article  Google Scholar 

  20. Mukherjee, P.S., Qiu, P.: 3-D image denoising by local smoothing and nonparametric regression. Technometrics 53(2), 254–273 (2011)

    Article  MathSciNet  Google Scholar 

  21. Mukherjee, P.S., Qiu, P.: Efficient bias correction for magnetic resonance image denoising. Stat. Med. 32(12), 2079–2096 (2013)

    Article  MathSciNet  Google Scholar 

  22. Mukherjee, P.S., Qiu, P.: Image denoising by a local clustering framework. J. Comput. Graph. Stat. 24(1), 196–208 (2015)

    Article  MathSciNet  Google Scholar 

  23. Om, H., Biswas, M.: A generalized image denoising method using neighbouring wavelet coefficients. Signal Image Video Process. 9(1), 191–200 (2015)

    Article  Google Scholar 

  24. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  25. Polzehl, J., Spokoiny, V.G.: Adaptive weights smoothing with applications to image restoration. J. R. Stat. Soc. (Ser. B) 62, 335–354 (2000)

    Article  MathSciNet  Google Scholar 

  26. Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Qiu, P.: Discontinuous regression surfaces fitting. Ann. Stat. 26, 2218–2245 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qiu, P.: Image Processing and Jump Regression Analysis. Wiley, New York (2005)

    Book  MATH  Google Scholar 

  29. Qiu, P.: Jump surface estimation, edge detection, and image restoration. J. Am. Stat. Assoc. 102, 745–756 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qiu, P., Mukherjee, P.S.: Edge structure preserving image denoising. Signal Process. 90(10), 2851–2862 (2010)

    Article  MATH  Google Scholar 

  31. Qiu, P., Mukherjee, P.S.: Edge structure preserving 3-D image denoising by local surface approximation. IEEE Trans. Pattern Anal. Mach. Intell. 34(8), 1457–1468 (2012)

    Article  Google Scholar 

  32. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, T., Gabbouj, M., Neuvo, Y.: Center weighted median filters: some properties and their applications in image processing. Signal Process. 35(3), 213–229 (1994)

    Article  MATH  Google Scholar 

  34. Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007)

    Article  MathSciNet  Google Scholar 

  35. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the 1998 IEEE International Conference on Computer Vision, pp. 839–846. Bombay, India (1998)

  36. Wang, Y., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  37. Wang, Y., Zhou, H.: Total variation wavelet-based medical image denoising. Int. J. Biomed. Imaging 2006, 1–6 (2006)

    Google Scholar 

  38. Wiest-Daessle, N., Prima, S., Coupe, P., Morrissey, S., Barillot, C.: Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: application to DT-MRI. In: MICCAI, New York, USA, pp. 104–117 (2008)

Download references

Acknowledgements

The author thanks the editor, an associate editor and two referees for their valuable comments which greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Sarathi Mukherjee.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 507 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, P.S. A multi-resolution and adaptive 3-D image denoising framework with applications in medical imaging. SIViP 11, 1379–1387 (2017). https://doi.org/10.1007/s11760-017-1096-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1096-5

Keywords

Navigation