[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Human gait recognition based on Haralick features

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper proposes a supervised feature extraction approach that is capable of selecting distinctive features for the recognition of human gait under clothing and carrying conditions, thus improving the recognition performances. The principle of the suggested approach is based on the Haralick features extracted from gait energy image (GEI). These features are extracted locally by dividing vertically or horizontally the GEI locally into two or three equal regions of interest, respectively. RELIEF feature selection algorithm is then employed on the extracted features in order to select only the most relevant features with a minimum redundancy. The proposed method is evaluated on CASIA gait database (Dataset B) under variations of clothing and carrying conditions for different viewing angles, and the experimental results using k-NN classifier have yielded attractive results of up to 80% in terms of highest identification rate at rank-1 when compared to existing and similar state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circ. Syst. Video Technol. 14(1), 4–20 (2004)

    Article  Google Scholar 

  2. Jain, A.K., Flynn, P., Ross, A.A.: Handbook of Biometrics. Springer Ed, Berlin (2007)

    Google Scholar 

  3. Tao, D., Li, X., Wu, X., Maybank, S.J.: General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29(10), 1700–1715 (2007)

    Article  Google Scholar 

  4. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)

    Article  Google Scholar 

  5. Lu, H., Venetsanopoulos, P.: A layered deformable model for gait analysis. In: Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 249–254 (2006)

  6. Little, J., Boyd, J.: Describing motion for recognition. In: International Symposium on Computer Vision, pp. 235–240 (1995)

  7. Niyogi, S., Adelson, E.: Analyzing and recognizing walking figures in XYT. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 469–474 (1994)

  8. Whytock, T., Belyaev, A., Robertson, N.: Dynamic distance-based shape features for gait recognition. J. Math. Imaging Vis. 50(3), 314–326 (2014)

    Article  MATH  Google Scholar 

  9. Zeng, W., Wang, C., Yang, F.: Silhouette-based gait recognition via deterministic learning. Pattern Recognit. 47(11), 3568–3584 (2014)

    Article  Google Scholar 

  10. Little, J., Boyd, J.: Recognizing people by their gait: the shape of motion. J. Comput. Vis. Res. 1(2), 1–32 (1998)

    Google Scholar 

  11. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  12. Ng, H., Tong, H.-L., Tan, W.-H., Yap, T.T., Chong, P., Abdullah, J.: Human Identification based on extracted gait features. Int. J. New Comput. Archit. Appl. 1(2), 358–370 (2011)

    Google Scholar 

  13. Bashir, K., Xiang, T., Gong, S.: Gait Representation Using Flow Fields, British Machine Vision Association (BMVC), pp. 1–11(2009)

  14. Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recognit. Lett. 31(13), 2052–2060 (2010)

    Article  Google Scholar 

  15. CASIA Gait Database, The Center for Biometrics and Security Research (CBSR), http://www.cbsr.ia.ac.cn/english/index.asp

  16. Mohan Kumar, H.P., Nagendraswamy, H.S.: LBP for gait recognition: a symbolic approach based on GEI plus RBL of GEI. In: International Conference on Electronics and Communication Systems (ICECS’2014), pp. 1–5 (2014)

  17. Yam, C., Nixon, M., Carter, J.: Automated person recognition by walking and running via model-based approaches. Pattern Recogni. 37(5), 1057–1072 (2004)

    Article  Google Scholar 

  18. Boulgouris, N.V., Chi, Z.X.: Gait recognition using radon transform and linear discriminant analysis. IEEE Trans. Image Process. 16(2), 731–740 (2007)

    Article  MathSciNet  Google Scholar 

  19. Dupuis, Y., Savatier, X., Vasseur, P.: Feature subset selection applied to model-free gait recognition. Image Vis. Comput. 31(8), 580–591 (2013)

    Article  Google Scholar 

  20. Kira, K., Rendell, L.: The feature selection problem: traditional methods and a new algorithm, AAAI-92 Proceedings., pp. 36–39 (1992)

  21. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  22. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: IEEE 18th International Conference on Pattern Recognition (ICPR), pp. 441–444 (2006)

  23. Hu, M., Wang, Y., Zhang, Z., Zhang, D., Little, J.J.: Incremental learning for video-based gait recognition with LBP flow. IEEE Trans. Cybern. 43(1), 77–89 (2013)

    Article  Google Scholar 

  24. Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanid gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005)

    Article  Google Scholar 

  25. Guan, Y., Li, C.-T., Roli, F.: On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 37(7), 1521–1528 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larbi Boubchir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lishani, A.O., Boubchir, L., Khalifa, E. et al. Human gait recognition based on Haralick features. SIViP 11, 1123–1130 (2017). https://doi.org/10.1007/s11760-017-1066-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1066-y

Keywords

Navigation