[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Hybrid wavelet measurement matrices for improving compressive imaging

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Compressive sensing principle claims that a compressible signal can be recovered from a small number of random linear measurements. However, the design of efficient measurement basis in compressive imaging remains as a challenging problem. In this paper, a new set of hybrid wavelet measurement matrices is proposed to improve the quality of the compressive imaging, increase the compression ratio and reduce the processing time. The performance of these hybrid wavelet matrices for image modeling and reconstruction is evaluated and compared with other traditional measurement matrices such as the random measurement matrices, Walsh and DCT matrices. The compressive imaging approach chosen in this study is the block compressive sensing with smoothed projected Landweber reconstruction technique. The simulation results indicate that the imaging performance of the proposed hybrid wavelet measurement matrices is approximately 2–3 dB better than that obtained using Gaussian matrix especially at higher compression ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  2. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

  4. Blumensath, T., Davies, M.E.: Gradient pursuits. IEEE Trans. Signal Process. 56(6), 2370–2382 (2008)

    Article  MathSciNet  Google Scholar 

  5. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, X., Wen, J., Han, Y., Villasenor, J.D.: An improved compressive sensing reconstruction algorithm using linear/non-linear mapping. In: ITA, pp. 146–152 (2011)

  7. Mun, S., Fowler, J.E.: Block compressed sensing of images using directional transforms. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 3021–3024. IEEE (2009)

  8. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candès, E.J., et al.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians, pp. 1433–1452. Madrid, Spain (2006)

  10. Thirumalai, V., Frossard, P.: Joint reconstruction of multiview compressed images. IEEE Trans. Image Process. 22(5), 1969–1981 (2013)

    Article  MathSciNet  Google Scholar 

  11. Donoho, D.L., Tsaig, Y., Drori, I., Starck, J.-L.: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012)

    Article  MathSciNet  Google Scholar 

  12. Qaisar, S., Bilal, R.M., Iqbal, W., Naureen, M., Lee, S.: Compressive sensing: from theory to applications, a survey. Commun. Netw. J. 15(5), 443–456 (2013)

    Article  Google Scholar 

  13. Baraniuk, R.: Compressive sensing (lecture notes). IEEE Trans. Signal Process. 24(4), 118–121 (2007)

    Article  MathSciNet  Google Scholar 

  14. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Do, T.T., Gan, L., Nguyen, N.H., Tran, T.D.: Fast and efficient compressive sensing using structurally random matrices. IEEE Trans. Signal Process. 60(1), 139–154 (2012)

    Article  MathSciNet  Google Scholar 

  16. Zhuoran, C., Honglin, Z., Min, J., Gang, W., Jingshi, S.: An improved Hadamard measurement matrix based on Walsh code for compressive sensing. In: Communications and Signal Processing (ICICS) 2013 9th International Conference on Information, pp. 1–4 (2013)

  17. Gan, L., Do, T.T., Tran, T.D.: Fast compressive imaging using scrambled block Hadamard ensemble. In: Signal Processing Conference, 2008 16th European. IEEE, pp. 1–5 (2008)

  18. Coifman, R., Geshwind, F., Meyer, Y.: Noiselets. Appl. Comput. Harmon. Anal. 10(1), 27–44 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pawar, K., Egan, G., Zhang, J.: Multichannel compressive sensing MRI using noiselet encoding. PLOS ONE. 10(5) (2015)

  20. Rauhut, H.: Circulant and Toeplitz matrices in compressed sensing. ArXiv Prepr. ArXiv09024394 (2009)

  21. Tiwari, V., Bansod, P.P., Kumar, A.: Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images. Cogent Eng. 2(1) (2015)

  22. Ashok, A., Neifeld, M.A.: Compressive imaging: hybrid measurement basis design. J. Opt. Soc. Am. A. 28(6), 1041–1050 (2011)

  23. Ashok, A., Neifeld, M.A.: Compressive imaging: hybrid projection design. In: Imaging Systems. Optical Society of America (2010)

  24. Gan, L.: Block compressed sensing of natural images. In: 2007 15th International Conference on Digital Signal Processing, pp. 403–406. IEEE (2007)

  25. Li, R., Zhu, X.: A PCA-based smoothed projected Landweber algorithm for Block Compressed sensing image reconstruction. In: 2012 International Conference on Image Analysis and Signal Processing (IASP), pp. 1–6. IEEE (2012)

  26. Fowler, J.E., Mun, S., Tramel, E.W.: Multiscale block compressed sensing with smoothed projected landweber reconstruction. In: 2011 19th European Signal Processing Conference, pp. 564–568. IEEE (2011)

  27. Van Trinh, C., Dinh, K.Q., Jeon, B.: Edge-preserving block compressive sensing with projected landweber. In: 2013 20th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 71–74. IEEE (2013)

  28. Kekre, H.B., Athawale, A., Sadavarti, D.: Algorithm to Generate Kekre’s Wavelet Transform from Kekre’s Transform. IJSET 2(5), 756–767 (2010)

  29. Kekre, H.B., Sarode, T., Natu, P.: Image compression using real fourier transform, its wavelet transform and hybrid wavelet with DCT. Int. J. Adv. Comput. Sci. Appl. 4, 41–47 (2013)

    Article  Google Scholar 

  30. Thepade, S.D., Erandole, S.: Effect of tiling in image compression using wavelet transform & hybrid wavelet transform for cosine and kekre transforms. In: 2013 International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN), pp. 753–758. IEEE (2013)

  31. Kekre, H.B., Sarode, T., Dhannawat, R.: Kekre’s wavelet transform for image fusion and comparison with other pixel based image fusion techniques. Int. J. Comput. Sci. Inf. Secur. 10(3), 23 (2012)

    Google Scholar 

  32. K, H.B., Sarode, T., Natu, S.: Performance comparison of hybrid wavelet transforms formed using Dct, Walsh, Haar and DKT in watermarking. Int. J. Comput. Sci. Inf. Technol 7(1), 41–58 (2015)

    Google Scholar 

  33. Mrak, S.G.-M.G.: Reliability of objective picture quality measures. J. Electr. Eng 55(1–2), 3–10 (2004)

    Google Scholar 

  34. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasha Shoitan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoitan, R., Nossair, Z., Isamil, I. et al. Hybrid wavelet measurement matrices for improving compressive imaging. SIViP 11, 65–72 (2017). https://doi.org/10.1007/s11760-016-0894-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0894-5

Keywords

Navigation