[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A geometric blind source separation method based on facet component analysis

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Given a set of mixtures, blind source separation attempts to retrieve the source signals without or with very little information of the mixing process. We present a geometric approach for blind separation of nonnegative linear mixtures termed facet component analysis. The approach is based on facet identification of the underlying cone structure of the data. Earlier works focus on recovering the cone by locating its vertices (vertex component analysis) based on a mutual sparsity condition which requires each source signal to possess a stand-alone peak in its spectrum. We formulate alternative conditions so that enough data points fall on the facets of a cone instead of accumulating around the vertices. To find a regime of unique solvability, we make use of both geometric and density properties of the data points and develop an efficient facet identification method by combining data classification and linear regression. For noisy data, total variation technique may be employed. We show computational results on nuclear magnetic resonance spectroscopic data to substantiate our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Boardman, J.: Automated spectral unmixing of AVRIS data using convex geometry concepts. In: Summaries of the IV Annual JPL Airborne Geoscience Workshop, JPL Pub. 93–26, 1, 11–14 (1993)

  2. Bobin, J., Starck, J.-L., Fadili, J., Moudden, Y.: Sparsity and morphological diversity in blind source separation. IEEE Trans. Image Process. 16, 2662–2674 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Process. 81, 2353–2362 (2001)

    Article  MATH  Google Scholar 

  4. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  5. Chang, C.I. (ed.): Hyperspectral Data Exploitation: Theory and Applications. Wiley-Interscience, Hoboken (2007)

  6. Choi, S., Cichocki, A., Park, H., Lee, S.: Blind source separation and independent component analysis: a review. Neural Inf. Process. Lett. Rev. 6, 1–57 (2005)

    Google Scholar 

  7. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. John Wiley and Sons, New York (2005)

    Google Scholar 

  8. Comon, P.: Independent component analysis-a new concept? Signal Process. 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  9. Ernst, R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, Oxford (1987)

    Google Scholar 

  10. Guo, Z., Osher, S.: Template matching via \(\ell _1\) minimization and its application to hyperspectral target detection. Inverse Probl. Imaging 5, 19–35 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoyer, P.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley and Sons, New York (2001)

    Book  Google Scholar 

  13. Klingenberg, B., Curry, J., Dougherty, A.: Non-negative matrix factorization: Ill-posedness and a geometric algorithm. Pattern Recognit. 42, 918–928 (2009)

    Article  MATH  Google Scholar 

  14. Liu, J., Xin, J., Qi, Y.-Y.: A dynamic algorithm for blind separation of convolutive sound mixtures. Neurocomputing 72, 521–532 (2008)

    Article  Google Scholar 

  15. Liu, J., Xin, J., Qi, Y.-Y.: A soft-constrained dynamic iterative method of blind source separation. SIAM J. Multiscale Model. Simul. 7, 1795–1810 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, J., Xin, J., Qi, Y.-Y., Zeng, F.-G.: A time domain algorithm for blind separation of convolutive sound mixtures and \(\ell _1\) constrained minimization of cross correlations. Comm. Math. Sci. 7(1), 109–128 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. McDonnell, M.: Box-filtering techniques. Comput. Graph. Image Process. 17, 65–70 (1981)

  18. Motzkin, T., Raiffa, H., Thompson, G., Thrall, R.J.: The Double Description Method. Annals of Math Studies, Vol. 8, Princeton University Press, pp. 51–73 (1953)

  19. Naanaa, W., Nuzillard, J.-M.: Blind source separation of positive and partially correlated data. Signal Process. 85(9), 1711–1722 (2005)

    Article  MATH  Google Scholar 

  20. Naanaa, W.: A Geometric Approach to Blind Separation of Nonnegative and Dependent Source Signals. 18th European Signal Processing Conference (EUSIPCO-2010), Aalborg, Denmark, August 23–27, pp. 747–750 (2010)

  21. Nascimento, J.M.P., Bioucas-Diasm, J.M.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(4), 898–910 (2005)

    Article  Google Scholar 

  22. Sun, Y., Ridge, C., del Rio, F., Shaka, A.J., Xin, J.: Postprocessing and sparse blind source separation of positive and partially overlapped data. Signal Process. 91(8), 1838–1851 (2011)

    Article  MATH  Google Scholar 

  23. Sun, Y., Xin, J.: Under-determined sparse blind source separation of nonnegative and partially overlapped data. SIAM J. Sci. Comput. 33(4), 2063–2094 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sun, Y., Xin, J.: A recursive sparse blind source separation method and its application to correlated data in NMR spectroscopy of bio-fluids. J. Sci. Comput. 51, 733–753 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sun, Y., Xin, J.: Nonnegative sparse blind source separation for NMR spectroscopy by data clustering, model reduction, and \(\ell _1\) minimization. SIAM J. Imaging Sci. 5(3), 886–911 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Winter, M.E.: N-findr: an algorithm for fast autonomous spectral endmember determination in hyperspectral data. Proc. SPIE 3753, 266–275 (1999)

    Article  Google Scholar 

  27. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work was partially supported by NSF-ATD grants DMS-0911277 and DMS-122507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanchang Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, P., Sun, Y. & Xin, J. A geometric blind source separation method based on facet component analysis. SIViP 10, 19–28 (2016). https://doi.org/10.1007/s11760-014-0696-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0696-6

Keywords

Navigation