[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

There are numerous neurological disorders such as dementia, headache, traumatic brain injuries, stroke, and epilepsy. Out of these epilepsy is the most prevalent neurological disorder in the human after stroke. Electroencephalogram (EEG) contains valuable information related to different physiological state of the brain. A scheme is presented for detecting epileptic seizures from EEG data recorded from normal subjects and epileptic patients. The scheme is based on discrete wavelet transform (DWT) analysis and approximate entropy (ApEn) of EEG signals. Seizure detection is performed in two stages. In the first stage, EEG signals are decomposed by DWT to calculate approximation and detail coefficients. In the second stage, ApEn values of the approximation and detail coefficients are calculated. Significant differences have been found between the ApEn values of the epileptic and the normal EEG allowing us to detect seizures with 100 % classification accuracy using artificial neural network. The analysis results depicted that during seizure activity, EEG had lower ApEn values compared to normal EEG. This gives that epileptic EEG is more predictable or less complex than the normal EEG. In this study, feed-forward back-propagation neural network has been used for classification and training algorithm for this network that updates the weight and bias values according to Levenberg–Marquardt optimization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasan O.: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 52027–52036 (2009)

    Google Scholar 

  2. Liu A., Hahn J.S., Heldt G.P., Coen R.W.: Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr. Clin. Neurophysiol. 82, 30–37 (1992)

    Article  Google Scholar 

  3. Gotman J., Flanagah D., Zhang J., Rosenblatt B.: Automatic seizure detection in the newborn: methods and initial evaluation. Electroencephalogr. Clin. Neurophysiol. 103, 356–362 (1997)

    Article  Google Scholar 

  4. Adeli H., Zhou Z., Dadmehr N.: Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123, 69–87 (2003)

    Article  Google Scholar 

  5. Khan Y.U., Gotman J.: Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114, 898–908 (2003)

    Article  Google Scholar 

  6. Zarjam P., Mesbah M., Boashash B.: Detection of newborns EEG seizure using optimal features based on discrete wavelet transform. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 2, 265–268 (2003)

    Google Scholar 

  7. Kannathal N., Choo M., Acharya U., Sadasivan P.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80(3), 187–194 (2005)

    Article  Google Scholar 

  8. Radhakrishnan N., Gangadhar B.: Estimating regularity in epileptic seizure time-series data: a complexity-measure approach. In: IEEE Eng. Med. Biol. 17(3), 89–94 (1998)

    Google Scholar 

  9. Pincus S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88, 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diambra L., Figueiredo J., Malta C.: Epileptic activity recognition in EEG recording. Phys. A Stat. Mech. Appl. 273(3–4), 495–505 (1999)

    Article  Google Scholar 

  11. Andrzejak R.G., Lehnertz K., Rieke C.: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64(6), 061907 (2001)

    Article  Google Scholar 

  12. Andrzejak R.G., Widman G., Lehnertz K.: The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy. Epilepsy Res. 44, 129–140 (2001)

    Article  Google Scholar 

  13. Foo S.Y., Stuart G., Harvey B., Meyer-Baese A.: Neural network-based EKG pattern recognition. Eng. Appl. Artif. Intell. 15, 253–260 (2002)

    Article  Google Scholar 

  14. Kiymik M.K., Akin M., Subasi A.: Automatic recognition of alertness level by using wavelet transform and artificial neural network. J. Neurosci. Methods 139, 231–240 (2004)

    Article  Google Scholar 

  15. Schaltenbrand N., Lengelle R., Toussaint M.: Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep 19(1), 26–35 (1996)

    Google Scholar 

  16. Kiymik M.K., Subasi A., Ozcalik H.R.: Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J. Med. Syst. 28(6), 511–522 (2004)

    Article  Google Scholar 

  17. Petrosian A., Prokhorov D., Homan R., Dashei R., Wunsch D.: Recurrent neural network based prediction of epileptic seizures in intra and extracranial EEG. Neurocomputing 30, 201–218 (2000)

    Article  Google Scholar 

  18. Subasi A.: Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst. Appl. 31, 320–328 (2006)

    Article  Google Scholar 

  19. Kalayci T., Ozdamar O.: Wavelet preprocessing for automated neural network detection of EEG spikes. In: IEEE Eng. Med. Biol. Mag. 14(2), 160–166 (1995)

    Google Scholar 

  20. Nigam V., Graupe D.: A neural-network-based detection of epilepsy. Neurol. Res. 26(1), 55–60 (2004)

    Article  Google Scholar 

  21. Mohseni, H., Maghsoudi, A., Kadbi, M., Hashemi, J., Ashourvan, A.: Automatic detection of epileptic seizure using time–frequency distributions. In: IET 3rd International Conference on Advances in Medical, Signal and Information Processing, MEDSIP 2006, vol. 14 (2006)

  22. Jahankhani, P., Kodogiannis, V., Revett, K.: EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA’06), pp. 52–57(2006)

  23. Subasi A.: Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 29(2), 343–355 (2005)

    Article  Google Scholar 

  24. Subasi A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)

    Article  Google Scholar 

  25. Srinivasan V., Eswaran C., Sriraam N.: Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29(6), 647–660 (2005)

    Article  Google Scholar 

  26. Güler N., Übeyli E., Güler I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005)

    Article  Google Scholar 

  27. Übeyli E.: Analysis of EEG signals using Lyapunov exponents. Neural Netw. World 16(3), 257–273 (2006)

    Google Scholar 

  28. Übeyli E.: Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals. Neural Netw. World 16(5), 421–431 (2006)

    Google Scholar 

  29. Kannathal N., Choo M.L., Acharya U.R., Sadasivan P.K.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80, 187–194 (2005)

    Article  Google Scholar 

  30. Subasi A.: Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2), 227–244 (2007)

    Article  Google Scholar 

  31. Guo L., Riveero D., Pazaos A.: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 193, 156–163 (2010)

    Article  Google Scholar 

  32. Polat K., Günes S.: Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tzallas, A., Tsipouras, M., Fotiadis, D.: Automatic seizure detection based on time–frequency analysis and artificial neural networks. Computational Intelligence and Neuroscience 13, Article ID 80510 (2007)

  34. Mallat S.: A theory for multi-resolution signal decomposition: the wavelet representation. In: IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    MATH  Google Scholar 

  35. Subasi A., Gursoy M.I.: EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Syst. Appl. 37, 8659–8666 (2010)

    Article  Google Scholar 

  36. Guo L., Rivero D., Dorado J., Rabunal J.R., Pazos A.: Automatic epileptic Seizure detection in EEG based on line length feature and artificial neural network. J. Neurosci. Methods 191, 101–109 (2010)

    Article  Google Scholar 

  37. Nicolaou N., Georgiou J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst. Appl. 39, 202–209 (2012)

    Article  Google Scholar 

  38. Orhan U., Hekim M., Ozer M.: EEG signals classification using the K means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38, 13475–13481 (2011)

    Article  Google Scholar 

  39. Guo L., Rivero D., Dorado J., Munteanu C.R., Pazos A.: Automatic feature extraction using genetic programming: an application to epileptic. EEG Classif. 38, 10425–10436 (2011)

    Google Scholar 

  40. Ubeyli E.D.: Least square support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Syst. Appl. 37, 233–239 (2010)

    Article  Google Scholar 

  41. Iscan Z., Dokur Z., Demiralap T.: Classification of electroencephalogram signals with combined time and frequency features. Expert Syst. Appl. 38, 10499–10505 (2011)

    Article  Google Scholar 

  42. Wang D., Miao D., Xie C.: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst. Appl. 38, 14314–14320 (2011)

    Google Scholar 

  43. Acharya U.R., Molinari F., Sree S.V., Chattopadhyay S.: Automatic diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)

    Article  Google Scholar 

  44. Hsu K.C., Yu S.N.: Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. Comput. Biol. Med. 40, 823–830 (2010)

    Article  Google Scholar 

  45. Guo, L., Rivero, D., Seoane, J., Pazos A.: Classification of EEG signals using relativewavelet energy and artificial neural networks. In: Proceedings of the first ACM/SIGEVO, Summit on Genetic and Evolutionary Computation (GEC’09), pp. 177–184. Shanghai (2009)

  46. Gandhi T., Panigrahi B.K., Anand S.: A comparative study of wavelet families for EEG signal classification. Neurocomputing 74, 3051–3057 (2011)

    Article  Google Scholar 

  47. Kayikcioglu T., Aydemir O.: A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recognit. Lett. 31, 1207–1215 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatindra Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, Y., Dewal, M.L. & Anand, R.S. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. SIViP 8, 1323–1334 (2014). https://doi.org/10.1007/s11760-012-0362-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0362-9

Keywords

Navigation