Abstract
There are numerous neurological disorders such as dementia, headache, traumatic brain injuries, stroke, and epilepsy. Out of these epilepsy is the most prevalent neurological disorder in the human after stroke. Electroencephalogram (EEG) contains valuable information related to different physiological state of the brain. A scheme is presented for detecting epileptic seizures from EEG data recorded from normal subjects and epileptic patients. The scheme is based on discrete wavelet transform (DWT) analysis and approximate entropy (ApEn) of EEG signals. Seizure detection is performed in two stages. In the first stage, EEG signals are decomposed by DWT to calculate approximation and detail coefficients. In the second stage, ApEn values of the approximation and detail coefficients are calculated. Significant differences have been found between the ApEn values of the epileptic and the normal EEG allowing us to detect seizures with 100 % classification accuracy using artificial neural network. The analysis results depicted that during seizure activity, EEG had lower ApEn values compared to normal EEG. This gives that epileptic EEG is more predictable or less complex than the normal EEG. In this study, feed-forward back-propagation neural network has been used for classification and training algorithm for this network that updates the weight and bias values according to Levenberg–Marquardt optimization technique.
Similar content being viewed by others
References
Hasan O.: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 52027–52036 (2009)
Liu A., Hahn J.S., Heldt G.P., Coen R.W.: Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr. Clin. Neurophysiol. 82, 30–37 (1992)
Gotman J., Flanagah D., Zhang J., Rosenblatt B.: Automatic seizure detection in the newborn: methods and initial evaluation. Electroencephalogr. Clin. Neurophysiol. 103, 356–362 (1997)
Adeli H., Zhou Z., Dadmehr N.: Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123, 69–87 (2003)
Khan Y.U., Gotman J.: Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114, 898–908 (2003)
Zarjam P., Mesbah M., Boashash B.: Detection of newborns EEG seizure using optimal features based on discrete wavelet transform. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 2, 265–268 (2003)
Kannathal N., Choo M., Acharya U., Sadasivan P.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80(3), 187–194 (2005)
Radhakrishnan N., Gangadhar B.: Estimating regularity in epileptic seizure time-series data: a complexity-measure approach. In: IEEE Eng. Med. Biol. 17(3), 89–94 (1998)
Pincus S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88, 2297–2301 (1991)
Diambra L., Figueiredo J., Malta C.: Epileptic activity recognition in EEG recording. Phys. A Stat. Mech. Appl. 273(3–4), 495–505 (1999)
Andrzejak R.G., Lehnertz K., Rieke C.: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64(6), 061907 (2001)
Andrzejak R.G., Widman G., Lehnertz K.: The epileptic process as nonlinear deterministic dynamics in a stochastic environment: An evaluation on mesial temporal lobe epilepsy. Epilepsy Res. 44, 129–140 (2001)
Foo S.Y., Stuart G., Harvey B., Meyer-Baese A.: Neural network-based EKG pattern recognition. Eng. Appl. Artif. Intell. 15, 253–260 (2002)
Kiymik M.K., Akin M., Subasi A.: Automatic recognition of alertness level by using wavelet transform and artificial neural network. J. Neurosci. Methods 139, 231–240 (2004)
Schaltenbrand N., Lengelle R., Toussaint M.: Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep 19(1), 26–35 (1996)
Kiymik M.K., Subasi A., Ozcalik H.R.: Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J. Med. Syst. 28(6), 511–522 (2004)
Petrosian A., Prokhorov D., Homan R., Dashei R., Wunsch D.: Recurrent neural network based prediction of epileptic seizures in intra and extracranial EEG. Neurocomputing 30, 201–218 (2000)
Subasi A.: Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst. Appl. 31, 320–328 (2006)
Kalayci T., Ozdamar O.: Wavelet preprocessing for automated neural network detection of EEG spikes. In: IEEE Eng. Med. Biol. Mag. 14(2), 160–166 (1995)
Nigam V., Graupe D.: A neural-network-based detection of epilepsy. Neurol. Res. 26(1), 55–60 (2004)
Mohseni, H., Maghsoudi, A., Kadbi, M., Hashemi, J., Ashourvan, A.: Automatic detection of epileptic seizure using time–frequency distributions. In: IET 3rd International Conference on Advances in Medical, Signal and Information Processing, MEDSIP 2006, vol. 14 (2006)
Jahankhani, P., Kodogiannis, V., Revett, K.: EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA’06), pp. 52–57(2006)
Subasi A.: Epileptic seizure detection using dynamic wavelet network. Expert Syst. Appl. 29(2), 343–355 (2005)
Subasi A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)
Srinivasan V., Eswaran C., Sriraam N.: Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29(6), 647–660 (2005)
Güler N., Übeyli E., Güler I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005)
Übeyli E.: Analysis of EEG signals using Lyapunov exponents. Neural Netw. World 16(3), 257–273 (2006)
Übeyli E.: Fuzzy similarity index employing Lyapunov exponents for discrimination of EEG signals. Neural Netw. World 16(5), 421–431 (2006)
Kannathal N., Choo M.L., Acharya U.R., Sadasivan P.K.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80, 187–194 (2005)
Subasi A.: Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2), 227–244 (2007)
Guo L., Riveero D., Pazaos A.: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J. Neurosci. Methods 193, 156–163 (2010)
Polat K., Günes S.: Classification of epileptic form EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 187(2), 1017–1026 (2007)
Tzallas, A., Tsipouras, M., Fotiadis, D.: Automatic seizure detection based on time–frequency analysis and artificial neural networks. Computational Intelligence and Neuroscience 13, Article ID 80510 (2007)
Mallat S.: A theory for multi-resolution signal decomposition: the wavelet representation. In: IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)
Subasi A., Gursoy M.I.: EEG signal classification using PCA, ICA, LDA and support vector machine. Expert Syst. Appl. 37, 8659–8666 (2010)
Guo L., Rivero D., Dorado J., Rabunal J.R., Pazos A.: Automatic epileptic Seizure detection in EEG based on line length feature and artificial neural network. J. Neurosci. Methods 191, 101–109 (2010)
Nicolaou N., Georgiou J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machine. Expert Syst. Appl. 39, 202–209 (2012)
Orhan U., Hekim M., Ozer M.: EEG signals classification using the K means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38, 13475–13481 (2011)
Guo L., Rivero D., Dorado J., Munteanu C.R., Pazos A.: Automatic feature extraction using genetic programming: an application to epileptic. EEG Classif. 38, 10425–10436 (2011)
Ubeyli E.D.: Least square support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Syst. Appl. 37, 233–239 (2010)
Iscan Z., Dokur Z., Demiralap T.: Classification of electroencephalogram signals with combined time and frequency features. Expert Syst. Appl. 38, 10499–10505 (2011)
Wang D., Miao D., Xie C.: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst. Appl. 38, 14314–14320 (2011)
Acharya U.R., Molinari F., Sree S.V., Chattopadhyay S.: Automatic diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)
Hsu K.C., Yu S.N.: Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. Comput. Biol. Med. 40, 823–830 (2010)
Guo, L., Rivero, D., Seoane, J., Pazos A.: Classification of EEG signals using relativewavelet energy and artificial neural networks. In: Proceedings of the first ACM/SIGEVO, Summit on Genetic and Evolutionary Computation (GEC’09), pp. 177–184. Shanghai (2009)
Gandhi T., Panigrahi B.K., Anand S.: A comparative study of wavelet families for EEG signal classification. Neurocomputing 74, 3051–3057 (2011)
Kayikcioglu T., Aydemir O.: A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data. Pattern Recognit. Lett. 31, 1207–1215 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kumar, Y., Dewal, M.L. & Anand, R.S. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. SIViP 8, 1323–1334 (2014). https://doi.org/10.1007/s11760-012-0362-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-012-0362-9