[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Surface structuring using kinematic modulation in grinding

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

A sustainable use of resources is rising to the top of the scientific agenda for industry and research institutes. Issues like raising power density, functional safety and reliability of machine components as well as the reduction of energy consumption during manufacturing and operation can lead to a sustainable use of resources. Offshore wind power stations for example can make a major contribution to resource conservation. The economic and ecological success of these plants is decisively dependent on the reliability of the gears, as the costs for maintenance and repairs especially offshore are very high. To meet high demands in terms of accurate dimensions and shape, as well as high surface qualities, innovative approaches for the manufacturing process of functional surfaces are pursued. The development of a kinematic modulated grinding process can lead to specific surface structures of functional surfaces. A reduction of surface roughness combined with tailored surface structuring offers a longer service life and higher power density of rolling contact partners, by influencing the distribution of the lubricant film positively. As a result, the squeezing of the lubricant film is more difficult. The basis for the technological investigation is a mathematical modeling of producible surface structures by using an additional movement. Based on the results given by the simulation, appropriate surface structures for rolling contacts can be identified and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kapp M (2010) Hartfeinbearbeitete Antriebskomponenten zur Steigerung der Energieeffizienz in Antrieben. Hrsg.: Seliger G, Uhlmann E, Proceedings PTK 2010—XIII Internationales Produktionstechnisches Kolloquium: Produktionstechnik Motor aus der Krise. Berlin: Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik IPK, pp 213–227

  2. Schwienbacher S (2008) Einfluss von Schleifbrand auf die Flankentragfähigkeit einsatzgehärteter Zahnräder. Dissertation, Institut für Maschinen und Fahrzeugtechnik—Lehrstuhl für Maschinenelemente, TU München

  3. Müller M (2009) Am Puls der Zeit—Wirkungsgradoptimierung. Sigma Rep 18:16–25

    Google Scholar 

  4. Abschlusskolloquium Sonderforschungsbereich 483 (2011) Hochbeanspruchte Gleit- und Friktionssysteme auf Basis ingenieurkeramischer Werkstoffe Abschlusskolloquium am 25. Oktober 2011, Karlsruhe Tagungsband, Karlsruher Institut für Technologie (KIT)

  5. Flores F (2010) Innovative Honverfahren. Motorenbau: Optimierung von Funktion und Fertigungstechnik. VDI-Zeitschrift, Springer, 152, 11/12, pp 28–31

  6. Zhu D, Hu YZ (2001) Effects of rough surface topography and orientation on the characteristics of EHD and mixed lubrication in both circular and elliptical contacts. Tribol Trans 44(3):391–398

    Article  Google Scholar 

  7. VDI/VDE-Richtlinie 2601 (1991) Anforderungen an die Oberflächengestalt zur Sicherung der Funktionstauglichkeit spanend hergestellter Flächen. Berlin, Beuth Verlag

  8. Uhlmann E, Borsoi Klein T, Hochschild L, Bäcker C (2011) Influence of structuring by abrasive machining on the tribological properties of workpiece surfaces. In: Procedia engineering, 1st CIRP conference on surface integrity (CSI), vol 19, pp 363–370

  9. DIN 8589-13 (2003) Fertigungsverfahren Spanen. Teil 13: Hubschleifen—Einordnung, Unterteilung, Begriffe. Deutsches Institut für Normung, Berlin, Beuth Verlag

  10. NN (2012) Supfina Grieshaber GmbH & Co. KG. http://supfina.com/DE/142.htm

  11. Werner G (1971) Kinematik und Mechanik des Schleifprozesses. Technische Hochschule Aachen, Dissertation

    Google Scholar 

  12. Zitt UR (1999) Modellierung und Simulation von Hochleistungsschleifprozessen. Prof. Dr.-Ing. Günter Warnecke, 1999 (FBK Produktionstechnische Berichte Band 34). ISSN 0937–9061

  13. Dulias U, Fang L, Zum Gahr KH (2002) Effect of surface roughness of self-mated alumina friction and wear in isooctane-lubricated reciprocating sliding contact. Wear 252:351–358

    Article  Google Scholar 

  14. Kreil O (2008) Einfluss der Oberflächenstruktur auf Druckverteilung und Schmierfilmdicke im EHD-Kontakt. Dissertation TU München

Download references

Acknowledgments

This work is supported by the priority program SPP 1551 of the German Research Foundation (DFG). This research program is dedicated to the investigation of resource-efficient construction elements. The title of the research project is “Einfluss kinematischer Modulationen beim Profilschleifen auf die Ausbildung von Oberflächenstrukturen an Zahnflanken und die kontaktmechanischen Eigenschaften im Eingriff” (Uh 100/140-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bäcker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlmann, E., Bäcker, C. & Schröer, N. Surface structuring using kinematic modulation in grinding. Prod. Eng. Res. Devel. 7, 373–381 (2013). https://doi.org/10.1007/s11740-013-0466-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0466-2

Keywords

Navigation