[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An agent-based concept for planning and control of the production of carbon fibre reinforced plastics aircraft structures with mobile production units

  • Assembly
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

This article is concerned with the control of the production of aircraft primary structures made of carbon fibre reinforced plastics. To increase the parallelization of the production, a scenario that implies new design paradigms is discussed. In order to realize this parallelization, mobile production entities work concurrently at the same primary structure of the fuselage. The present article proposes a software architecture for the control of such a production system. It is proposed that components are organized hierarchically. In enhancement to previous proposals, two perspectives of hierarchy are used here: grouping by functionality and grouping by timing context. The core of the architecture is a market-based multi-agent system, where the agents may operate in multiple timing contexts. Such a design yields advantages in terms of fast integration of new functionalities and scale-up of the production system. In brief, this article introduces a top-level control architecture for parallelized production of large reliable CFRP structures in a scalable production system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. \({\sl ORCA2}\) [5], \({\sl Player}\) [22], \({\sl SFMIDDLEWARE}\) [16], \({\sl CLARAty}\) [20], \({\sl MIRO}\) [29], \({\sl OpenRDK,\, MARIE}\) [7], \({\sl MiRPA}\) [12], \({\sl OROCOS}\) [6], \({\sl OSACA}\) [26], \({\sl MCA2}\) [13].

  2. The planning algorithms and more details about the agent-based implementations are subject of [15].

References

  1. Airbus SAS (2012) Internet ressource. http://www.airbus.com/aircraftfamilies/passengeraircraft/a350xwbfamily

  2. Arnold JA, Ramulu MB, Rao PNC (2004) Importance of assembly simulation as an aid for process planning for an aircraft assembly operation: perspective from experience. Int J Manuf Tech Manage 6(5):434–456

    Google Scholar 

  3. Barata J, Camarinha-Matos L, Candido G (2008) A multiagent-based control system applied to an educational shop floor. Rob Comput Integr Manuf 24(5):597–605

    Article  Google Scholar 

  4. Brecher C (ed) (2012) Integrative production technology for high-wage countries. Springer, Berlin, ISBN 978-3-642-21066-2

  5. Brooks A, Kaupp T, Makarenko A (2008) ORCA: components for robotics. Internet-ressource. http://orca-robotics.sourceforge.net/

  6. Bruyninckx Hea (2008) OROCOS—open source robot control software. Internet-ressource. http://www.orocos.org/, iST-2000-31064

  7. Cöté C (2008) Mobile and autonomous robotics integration environment. http://marie.sourceforge.net

  8. Dias MB, Zlot R, Kalra N, Stentz A (2006) Market-based multirobot coordination: a survey. Proc IEEE 94:1257–1270

    Article  Google Scholar 

  9. Dietrich F, Maaß J, Raatz A, Hesselbach J (2010) Rca562: control architecture for parallel kinematic robots. In: Schütz D, Wahl FM (eds) Robotic systems for handling and assembly, Springer, Berlin

    Google Scholar 

  10. Duelen G, Munch H, Zhang Y (1991) A comparison of control strategies for force constrained cooperating robots. In: Proceedings of IEEE international conference on decision and control, vol 1, pp 708–709, doi:10.1109/CDC.1991.261402

  11. Färber H (15.06.2010) Process chain of the cfrp—barrel manufacturing and assembly. In: CFK-valley stade convention 2010, stade

  12. Finkemeyer B, Kröger T, Kubus D, Olschewski M, Wahl FM (2007) MiRPA: middleware for robotic and process control applications. In: IEEE international conference on intelligent robots and systems, San Diego, USA, pp 76–90

  13. FZI Karlsruhe (2008) Modular controller architecture version 2. Internet-ressource, http://www.mca2.org/, ABTEILUNG Interaktive Diagnose- und Servicesysteme

  14. Garg D, Fath A, Martinez A (2002) Real-time open-platform-based control of cooperating industrial robotic manipulators. In: IEEE international symposium on intelligent control, pp 428–433. doi:10.1109/ISIC.2002.1157801

  15. Hourani H, Wolters P, Hauck E, Raatz A, Jeschke S (2011) An agent-based concept for planning and control of the production of carbon fibre reinforced plastics aircrafts with mobile production units—planning algorithm. In: IEEE-ICIRA 2011, Aachen

  16. Jorg S, Nickl M, Hirzinger G (2006) Flexible signal-oriented hardware abstraction for rapid prototyping of robotic systems. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 3755–3760

  17. Maaß J, Hesselbach J, Kohn N (2006) Open modular robot control architecture for assembly using the task frame formalism. Int J Adv Rob Syst 3:001–010

    Article  Google Scholar 

  18. Maaß JH (2009) Ein Beitrag zur Steuerungstechnik für parallelkinematische Roboter in der Montage. PhD thesis, TU Braunschweig, Vulkan Verlag (in german)

  19. MTorres Disenos Industriales SA (2012) Torreslayup tape laying machine. Internet ressource. http://www.mtorres.es/ventana.asp?id=35

  20. NASA, JPL (2012) Claraty robotic software. Internet-ressource. http://claraty.jpl.nasa.gov

  21. Pritschow G (2006) Einführung in die Steuerungstechnik. Hanser

  22. Project TP (2008) Internet-ressource. http://playerstage.sourceforge.net/

  23. Sciavicco L, Siciliano B (2000) Modelling and control of robot manipulators. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Solvang B, Sziebig G, Korondi P (2008) Multilevel control of flexible manufacturing systems. Conf Hum Syst Interact HSI 785–790

  25. Swanstrom FM, Hawke T (2000) Design for manufacturing and assembly: a case study in cost reduction for composite wing tip structures. SAMPE J 36(3):9–16

    Google Scholar 

  26. The OSACA Project Consortium (2010) Open system architecture for controls within automation systems. http://www.osaca.org/.Internet-Ressource

  27. Thomas D (2010) Middleware for efficient programming of autonomous mobile robots. PhD thesis, TU Darmstadt, Department of Computer Science. http://tuprints.ulb.tu-darmstadt.de/2343

  28. Tu M, Jia-Hong L, Ruey-Shun C, Kai-Ying C, Jung-Sing J (2009) Agent-based control framework for mass customization manufacturing with uhf rfid technology. Syst J IEEE 3(3):343–359. doi:10.1109/JSYST.2009.2029663

    Google Scholar 

  29. Utz H, Sablatnog S, Enderle S, Kraetzschmar G (2002) Miro-middleware for mobile robot applications. Robot Autom IEEE Trans 18(4):493–497

    Article  Google Scholar 

  30. van Brussel H, Wyns J, Valckenaers P, Bongaerts L, Peeters P (1998) Reference architecture for holonic manufacturing systems: Prosa. Comput Ind 37(3):255–274

    Article  Google Scholar 

  31. Vasiliev VV, Razin AF (2006) Anisogrid composite lattice structures for spacecraft and aircraft applications: fifteenth international conference on composite materials—iccm-15. Compos Struct 76(1–2):182–189

    Article  Google Scholar 

  32. Vasiliev VV, Barynin VA, Rasin AF (2001) Anisogrid lattice structures—survey of development and application. Compos Struct 54(2–3):361–370

    Article  Google Scholar 

  33. Vrba P, Radakovic M, Obitko M, Marik V (2009) Semantic extension of agent-based control: the packing cell case study. Lect Notes Comput Sci 5696 LNAI:47–60

    Google Scholar 

  34. Wurman PR, D’Andrea R, Mountz M (2008) Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag 29(1):9–19

    Google Scholar 

  35. Yu XY, Sun SD (2008) Global design to gain a competitive edge, Springer, chap Load balancing task allocation of collaborative workshops based on immune algorithm, pp 729–742

  36. Zivanovic MD, Vukobratovic M (2006) Multi-arm cooperating robots: dynamics and control. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Dietrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, F., Löchte, C., Jeschke, S. et al. An agent-based concept for planning and control of the production of carbon fibre reinforced plastics aircraft structures with mobile production units. Prod. Eng. Res. Devel. 6, 531–539 (2012). https://doi.org/10.1007/s11740-012-0388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-012-0388-4

Keywords

Navigation