Abstract
Functions to calculate measures of spatial association, especially measures of spatial autocorrelation, have been made available in many software applications. Measures may be global, applying to the whole data set under consideration, or local, applying to each observation in the data set. Methods of statistical inference may also be provided, but these will, like the measures themselves, depend on the support of the observations, chosen assumptions, and the way in which spatial association is represented; spatial weights are often used as a representational technique. In addition, assumptions may be made about the underlying mean model, and about error distributions. Different software implementations may choose to expose these choices to the analyst, but the sets of choices available may vary between these implementations, as may default settings. This comparison will consider the implementations of global Moran’s I, Getis–Ord G and Geary’s C, local \(I_i\) and \(G_i\), available in a range of software including Crimestat, GeoDa, ArcGIS, PySAL and R contributed packages.
Similar content being viewed by others
Notes
Some free software, like CrimeStat, is closed source.
Source code now available from https://github.com/rsbivand/legacy_systat.
For an example, see https://community.esri.com/thread/60740.
In implementations we also find \(m_2 = (n - 1)^{-1} \sum _{i=1}^{n}z_i^2\), but this does not seem to have support in the original source.
Again, division by \((n-1)\) is encountered in implementations.
https://github.com/GeoDaCenter/geoda/blob/master/Explore/GStatCoordinator.cpp, lines 338–342, 526–527.
References
Alam M, Rönnegård L, Shen X (2015) Fitting conditional and simultaneous autoregressive spatial models in hglm. R J 7(2):5–18. http://journal.r-project.org/archive/2015-2/alam-ronnegard-shen.pdf
Allaire JJ, Ushey K, Tang Y (2018) reticulate: interface to ’Python’. https://CRAN.R-project.org/package=reticulate, R package version 1.8
Anselin L (1992) SpaceStat, a software program for analysis of spatial data. National Center for Geographic Information and Analysis (NCGIA), University of California, Santa Barbara
Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115
Anselin L (1996) The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In: Fischer MM, Scholten HJ, Unwin D (eds) Spatial analytical perspectives on GIS. Taylor & Francis, London, pp 111–125
Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38:5–22
Assunção R, Reis EA (1999) A new proposal to adjust Moran’s I for population density. Stat Med 18:2147–2162
Bivand RS (1992) SYSTAT-compatible software for modeling spatial dependence among observations. Comput Geosci 18(8):951–963. https://doi.org/10.1016/0098-3004(92)90013-H
Bivand RS (1998) Software and software design issues in the exploration of local dependence. The Statistician 47:499–508
Bivand RS (2006) Implementing spatial data analysis software tools in R. Geogr Anal 38:23–40
Bivand RS (2008) Implementing representations of space in economic geography. J Reg Sci 48:1–27
Bivand RS (2009) Applying measures of spatial autocorrelation: computation and simulation. Geogr Anal 41(375–384):10
Bivand RS, Gebhardt A (2000) Implementing functions for spatial statistical analysis using the R language. J Geogr Syst 2:307–317
Bivand RS, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63(1):1–36. https://doi.org/10.18637/jss.v063.i18
Bivand RS, Portnov BA (2004) Exploring spatial data analysis techniques using R: the case of observations with no neighbours. In: Anselin L, Florax RJGM, Rey SJ (eds) Advances in spatial econometrics: methodology, tools, applications. Springer, Berlin, pp 121–142
Bivand RS, Müller W, Reder M (2009) Power calculations for global and local Moran’s I. Comput Stat Data Anal 53:2859–2872
Bivand RS, Sha Z, Osland L, Thorsen IS (2017) A comparison of estimation methods for multilevel models of spatially structured data. Spat Stat. https://doi.org/10.1016/j.spasta.2017.01.002
Bjornstad ON (2018) ncf: spatial covariance functions. https://CRAN.R-project.org/package=ncf, R package version 1.2-5
Caldas de Castro M, Singer BH (2006) Controlling the false discovery rate: a new application to account for multiple and dependent tests in local statistics of spatial association. Geogr Anal 38(2):180–208. https://doi.org/10.1111/j.0016-7363.2006.00682.x
Cliff AD, Ord JK (1969) The problem of spatial autocorrelation. In: Scott AJ (ed) London Papers in Regional Science 1, Studies in Regional Science. Pion, London, pp 25–55
Cliff AD, Ord JK (1971) Evaluating the percentage points of a spatial autocorrelation coefficient. Geogr Anal 3(1):51–62. https://doi.org/10.1111/j.1538-4632.1971.tb00347.x
Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, London
Cliff AD, Ord JK (1981) Spatial processes. Pion, London
Cressie NAC (1993) Statistics for spatial data. Wiley, New York
Duncan OD, Cuzzort RP, Duncan B (1961) Statistical geography: problems in analyzing areal data. Free Press, Glencoe
Geary RC (1954) The contiguity ratio and statistical mapping. Inc Stat 5:115–145
Getis A, Ord JK (1992) The analysis of spatial association by the use of distance statistics. Geogr Anal 24(2):189–206
Getis A, Ord JK (1993) Erratum: The analysis of spatial association by the use of distance statistics. Geogr Anal 25(3):276
Getis A, Ord JK (1996) Local spatial statistics: an overview. In: Longley P, Batty M (eds) Spatial analysis: modelling in a GIS environment. GeoInformation International, Cambridge, pp 261–277
Gómez-Rubio V, Ferrándiz-Ferragud J, López-Quílez A (2005) Detecting clusters of disease with R. J Geogr Syst 7(2):189–206
Goodchild MF (1986) Spatial autocorrelation. Geobooks, Norwich. https://alexsingleton.files.wordpress.com/2014/09/47-spatial-aurocorrelation.pdf
Hepple LW (1998) Exact testing for spatial autocorrelation among regression residuals. Environ Plan A 30:85–108
Kalogirou S (2017) lctools: local correlation, spatial inequalities, geographically weighted regression and other tools. https://CRAN.R-project.org/package=lctools, R package version 0.2-6
Levine N (2006) Crime mapping and the CrimeStat program. Geogr Anal 38(1):41–56
Levine N (2017) Crimestat: a spatial statistical program for the analysis of crime incidents. In: Shekhar S, Xiong H, Zhou X (eds) Encyclopedia of GIS. Springer, Cham, pp 381–388. https://doi.org/10.1007/978-3-319-17885-1_229
McMillen DP (2003) Spatial autocorrelation or model misspecification? Int Reg Sci Rev 26:208–217
Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23
Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(3):286–306
Ord JK, Getis A (2001) Testing for local spatial autocorrelation in the presence of global autocorrelation. J Reg Sci 41(3):411–432
Ord JK, Getis A (2012) Local spatial heteroscedasticity (LOSH). Ann Reg Sci 48(2):529–539
Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290
Rey SJ, Anselin L (2007) Pysal: a python library of spatial analytical methods. Rev Reg Stud 37(1):5–27
Rey SJ, Anselin L, Li X, Pahle R, Laura J, Li W, Koschinsky J (2015) Open geospatial analytics with pysal. ISPRS Int J Geoinf 4(2):815–836. https://doi.org/10.3390/ijgi4020815
Ripley BD (1981) Spatial statistics. Wiley, New York
Schabenberger O, Gotway CA (2005) Statistical methods for spatial data analysis. Chapman & Hall, Boca Raton
Scott LM, Janikas MV (2010) Spatial statistics in ArcGIS. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis: software tools, methods and applications. Springer, Berlin, pp 27–41. https://doi.org/10.1007/978-3-642-03647-7_2
Sokal RR, Oden NL (1978) Spatial autocorrelation in biology: 1. methodology. Biol J Linn Soc 10(2):199–228. https://doi.org/10.1111/j.1095-8312.1978.tb00013.x
Sokal RR, Oden NL, Thomson BA (1998) Local spatial autocorrelation in a biological model. Geogr Anal 30:331–354
Tiefelsdorf M (2000) Modelling spatial processes: the identification and analysis of spatial relationships in regression residuals by means of Moran’s I. Springer, Berlin
Tiefelsdorf M (2002) The saddlepoint approximation of Moran’s I and local Moran’s \({I}_i\) reference distributions and their numerical evaluation. Geogr Anal 34:187–206
Tiefelsdorf M, Boots BN (1995) The exact distribution of Moran’s I. Environ Plan A 27:985–999
Tiefelsdorf M, Boots BN (1997) A note on the extremities of local Moran’s I and their impact on global Moran’s I. Geogr Anal 29:248–257
Westerholt R, Resch B, Zipf A (2015) A local scale-sensitive indicator of spatial autocorrelation for assessing high- and low-value clusters in multiscale datasets. Int J Geogr Inf Sci 29(5):868–887. https://doi.org/10.1080/13658816.2014.1002499
Westerholt R, Resch B, Mocnik FB, Hoffmeister D (2018) A statistical test on the local effects of spatially structured variance. Int J Geogr Inf Sci 32(3):571–600. https://doi.org/10.1080/13658816.2017.1402914
Wong DWS, Lee J (2005) Statistical analysis of geographic information with ArcView GIS and ArcGIS. Wiley, New York
Xu M, Mei CL, Yan N (2014) A note on the null distribution of the local spatial heteroscedasticity (LOSH) statistic. Ann Reg Sci 52(3):697–710
Acknowledgements
We would like to thank the editors and reviewers for constructive suggestions that we hope have clarified the conclusions of this comparative study. We would also like to thank Shiyang Ruan for assistance with ArcGIS Python programming.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bivand, R.S., Wong, D.W.S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018). https://doi.org/10.1007/s11749-018-0599-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11749-018-0599-x