[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Comparing implementations of global and local indicators of spatial association

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Functions to calculate measures of spatial association, especially measures of spatial autocorrelation, have been made available in many software applications. Measures may be global, applying to the whole data set under consideration, or local, applying to each observation in the data set. Methods of statistical inference may also be provided, but these will, like the measures themselves, depend on the support of the observations, chosen assumptions, and the way in which spatial association is represented; spatial weights are often used as a representational technique. In addition, assumptions may be made about the underlying mean model, and about error distributions. Different software implementations may choose to expose these choices to the analyst, but the sets of choices available may vary between these implementations, as may default settings. This comparison will consider the implementations of global Moran’s I, Getis–Ord G and Geary’s C, local \(I_i\) and \(G_i\), available in a range of software including Crimestat, GeoDa, ArcGIS, PySAL and R contributed packages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Some free software, like CrimeStat, is closed source.

  2. Source code now available from https://github.com/rsbivand/legacy_systat.

  3. For an example, see https://community.esri.com/thread/60740.

  4. In implementations we also find \(m_2 = (n - 1)^{-1} \sum _{i=1}^{n}z_i^2\), but this does not seem to have support in the original source.

  5. Again, division by \((n-1)\) is encountered in implementations.

  6. https://nij.gov/topics/technology/maps/pages/crimestat.aspx.

  7. https://github.com/GeoDaCenter/geoda/.

  8. https://spatial.uchicago.edu/geoda.

  9. http://pysal.readthedocs.io/en/latest/.

  10. https://github.com/pysal.

  11. https://cran.r-project.org/package=spdep.

  12. https://github.com/r-spatial/spdep/.

  13. https://data.cdrc.ac.uk/tutorial/an-introduction-to-spatial-data-analysis-and-visualisation-in-r.

  14. https://github.com/pysal/pysal/issues/970.

  15. https://github.com/GeoDaCenter/geoda/blob/master/Explore/GStatCoordinator.cpp, lines 338–342, 526–527.

References

  • Alam M, Rönnegård L, Shen X (2015) Fitting conditional and simultaneous autoregressive spatial models in hglm. R J 7(2):5–18. http://journal.r-project.org/archive/2015-2/alam-ronnegard-shen.pdf

  • Allaire JJ, Ushey K, Tang Y (2018) reticulate: interface to ’Python’. https://CRAN.R-project.org/package=reticulate, R package version 1.8

  • Anselin L (1992) SpaceStat, a software program for analysis of spatial data. National Center for Geographic Information and Analysis (NCGIA), University of California, Santa Barbara

    Google Scholar 

  • Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115

    Article  Google Scholar 

  • Anselin L (1996) The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In: Fischer MM, Scholten HJ, Unwin D (eds) Spatial analytical perspectives on GIS. Taylor & Francis, London, pp 111–125

    Google Scholar 

  • Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38:5–22

    Article  Google Scholar 

  • Assunção R, Reis EA (1999) A new proposal to adjust Moran’s I for population density. Stat Med 18:2147–2162

    Article  Google Scholar 

  • Bivand RS (1992) SYSTAT-compatible software for modeling spatial dependence among observations. Comput Geosci 18(8):951–963. https://doi.org/10.1016/0098-3004(92)90013-H

    Article  Google Scholar 

  • Bivand RS (1998) Software and software design issues in the exploration of local dependence. The Statistician 47:499–508

    Google Scholar 

  • Bivand RS (2006) Implementing spatial data analysis software tools in R. Geogr Anal 38:23–40

    Article  Google Scholar 

  • Bivand RS (2008) Implementing representations of space in economic geography. J Reg Sci 48:1–27

    Article  Google Scholar 

  • Bivand RS (2009) Applying measures of spatial autocorrelation: computation and simulation. Geogr Anal 41(375–384):10

    Google Scholar 

  • Bivand RS, Gebhardt A (2000) Implementing functions for spatial statistical analysis using the R language. J Geogr Syst 2:307–317

    Article  Google Scholar 

  • Bivand RS, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63(1):1–36. https://doi.org/10.18637/jss.v063.i18

    Article  Google Scholar 

  • Bivand RS, Portnov BA (2004) Exploring spatial data analysis techniques using R: the case of observations with no neighbours. In: Anselin L, Florax RJGM, Rey SJ (eds) Advances in spatial econometrics: methodology, tools, applications. Springer, Berlin, pp 121–142

    Chapter  Google Scholar 

  • Bivand RS, Müller W, Reder M (2009) Power calculations for global and local Moran’s I. Comput Stat Data Anal 53:2859–2872

    Article  MathSciNet  Google Scholar 

  • Bivand RS, Sha Z, Osland L, Thorsen IS (2017) A comparison of estimation methods for multilevel models of spatially structured data. Spat Stat. https://doi.org/10.1016/j.spasta.2017.01.002

    Article  MathSciNet  Google Scholar 

  • Bjornstad ON (2018) ncf: spatial covariance functions. https://CRAN.R-project.org/package=ncf, R package version 1.2-5

  • Caldas de Castro M, Singer BH (2006) Controlling the false discovery rate: a new application to account for multiple and dependent tests in local statistics of spatial association. Geogr Anal 38(2):180–208. https://doi.org/10.1111/j.0016-7363.2006.00682.x

    Article  Google Scholar 

  • Cliff AD, Ord JK (1969) The problem of spatial autocorrelation. In: Scott AJ (ed) London Papers in Regional Science 1, Studies in Regional Science. Pion, London, pp 25–55

    Google Scholar 

  • Cliff AD, Ord JK (1971) Evaluating the percentage points of a spatial autocorrelation coefficient. Geogr Anal 3(1):51–62. https://doi.org/10.1111/j.1538-4632.1971.tb00347.x

    Article  Google Scholar 

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, London

    Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes. Pion, London

    MATH  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Book  Google Scholar 

  • Duncan OD, Cuzzort RP, Duncan B (1961) Statistical geography: problems in analyzing areal data. Free Press, Glencoe

    Google Scholar 

  • Geary RC (1954) The contiguity ratio and statistical mapping. Inc Stat 5:115–145

    Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by the use of distance statistics. Geogr Anal 24(2):189–206

    Google Scholar 

  • Getis A, Ord JK (1993) Erratum: The analysis of spatial association by the use of distance statistics. Geogr Anal 25(3):276

    Google Scholar 

  • Getis A, Ord JK (1996) Local spatial statistics: an overview. In: Longley P, Batty M (eds) Spatial analysis: modelling in a GIS environment. GeoInformation International, Cambridge, pp 261–277

    Google Scholar 

  • Gómez-Rubio V, Ferrándiz-Ferragud J, López-Quílez A (2005) Detecting clusters of disease with R. J Geogr Syst 7(2):189–206

    Article  Google Scholar 

  • Goodchild MF (1986) Spatial autocorrelation. Geobooks, Norwich. https://alexsingleton.files.wordpress.com/2014/09/47-spatial-aurocorrelation.pdf

  • Hepple LW (1998) Exact testing for spatial autocorrelation among regression residuals. Environ Plan A 30:85–108

    Article  Google Scholar 

  • Kalogirou S (2017) lctools: local correlation, spatial inequalities, geographically weighted regression and other tools. https://CRAN.R-project.org/package=lctools, R package version 0.2-6

  • Levine N (2006) Crime mapping and the CrimeStat program. Geogr Anal 38(1):41–56

    Article  Google Scholar 

  • Levine N (2017) Crimestat: a spatial statistical program for the analysis of crime incidents. In: Shekhar S, Xiong H, Zhou X (eds) Encyclopedia of GIS. Springer, Cham, pp 381–388. https://doi.org/10.1007/978-3-319-17885-1_229

    Chapter  Google Scholar 

  • McMillen DP (2003) Spatial autocorrelation or model misspecification? Int Reg Sci Rev 26:208–217

    Article  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Article  MathSciNet  Google Scholar 

  • Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(3):286–306

    Google Scholar 

  • Ord JK, Getis A (2001) Testing for local spatial autocorrelation in the presence of global autocorrelation. J Reg Sci 41(3):411–432

    Article  Google Scholar 

  • Ord JK, Getis A (2012) Local spatial heteroscedasticity (LOSH). Ann Reg Sci 48(2):529–539

    Article  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  Google Scholar 

  • Rey SJ, Anselin L (2007) Pysal: a python library of spatial analytical methods. Rev Reg Stud 37(1):5–27

    Google Scholar 

  • Rey SJ, Anselin L, Li X, Pahle R, Laura J, Li W, Koschinsky J (2015) Open geospatial analytics with pysal. ISPRS Int J Geoinf 4(2):815–836. https://doi.org/10.3390/ijgi4020815

    Article  Google Scholar 

  • Ripley BD (1981) Spatial statistics. Wiley, New York

    Book  Google Scholar 

  • Schabenberger O, Gotway CA (2005) Statistical methods for spatial data analysis. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  • Scott LM, Janikas MV (2010) Spatial statistics in ArcGIS. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis: software tools, methods and applications. Springer, Berlin, pp 27–41. https://doi.org/10.1007/978-3-642-03647-7_2

    Chapter  Google Scholar 

  • Sokal RR, Oden NL (1978) Spatial autocorrelation in biology: 1. methodology. Biol J Linn Soc 10(2):199–228. https://doi.org/10.1111/j.1095-8312.1978.tb00013.x

    Article  Google Scholar 

  • Sokal RR, Oden NL, Thomson BA (1998) Local spatial autocorrelation in a biological model. Geogr Anal 30:331–354

    Article  Google Scholar 

  • Tiefelsdorf M (2000) Modelling spatial processes: the identification and analysis of spatial relationships in regression residuals by means of Moran’s I. Springer, Berlin

    Book  Google Scholar 

  • Tiefelsdorf M (2002) The saddlepoint approximation of Moran’s I and local Moran’s \({I}_i\) reference distributions and their numerical evaluation. Geogr Anal 34:187–206

    Google Scholar 

  • Tiefelsdorf M, Boots BN (1995) The exact distribution of Moran’s I. Environ Plan A 27:985–999

    Article  Google Scholar 

  • Tiefelsdorf M, Boots BN (1997) A note on the extremities of local Moran’s I and their impact on global Moran’s I. Geogr Anal 29:248–257

    Article  Google Scholar 

  • Westerholt R, Resch B, Zipf A (2015) A local scale-sensitive indicator of spatial autocorrelation for assessing high- and low-value clusters in multiscale datasets. Int J Geogr Inf Sci 29(5):868–887. https://doi.org/10.1080/13658816.2014.1002499

    Article  Google Scholar 

  • Westerholt R, Resch B, Mocnik FB, Hoffmeister D (2018) A statistical test on the local effects of spatially structured variance. Int J Geogr Inf Sci 32(3):571–600. https://doi.org/10.1080/13658816.2017.1402914

    Article  Google Scholar 

  • Wong DWS, Lee J (2005) Statistical analysis of geographic information with ArcView GIS and ArcGIS. Wiley, New York

    Google Scholar 

  • Xu M, Mei CL, Yan N (2014) A note on the null distribution of the local spatial heteroscedasticity (LOSH) statistic. Ann Reg Sci 52(3):697–710

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the editors and reviewers for constructive suggestions that we hope have clarified the conclusions of this comparative study. We would also like to thank Shiyang Ruan for assistance with ArcGIS Python programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger S. Bivand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bivand, R.S., Wong, D.W.S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018). https://doi.org/10.1007/s11749-018-0599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-018-0599-x

Keywords

Mathematics Subject Classification

Navigation