[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Impact of the degree of starch gelatinization on the texture, soaking, and cooking characteristics of high amylose rice: an experimental and numerical study

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The degree of gelatinization (DG) of rice starch during paddy parboiling is associated with its physicochemical, water absorption, and cooking properties. The selection of rice with a proper DG that fulfills consumer preferences and matches the quality requirements of rice-based product industries can be guided by empirical models. This study aims to establish the empirical correlation explaining the impact of varying DG on rice properties. Paddy was open-parboiled to varying DG (5–65%), studied for its physicochemical, water absorption, and cooking properties, and empirically modeled for its changes with varying DG. In addition, the water absorption properties of rice with varying DG and the respective changes in hardness and cooking time were also studied and modeled. The empirical relationships developed from the experimental findings relate to rice’s physicochemical, water absorption, and cooking properties for varying DGs. The changes in hardness, apparent amylose content, cooking properties, and whiteness index with increasing DG followed polynomial and power law equations. The moisture gained during the soaking of milled rice with varying DG followed the Weibull and Peleg model. With the increase in soaking time, the rice’s hardness and cooking time decreased, following the first-order kinetics. The results suggest that the established empirical models can be used to forecast the physicochemical, soaking, and cooking attributes of rice with varying DGs that significantly impact rice and rice-based product development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors, upon reasonable request.

References

  1. R.J.N. Tiozon, A.R. Fernie, N. Sreenivasulu, Trends Food Sci. Technol. 109, 65 (2021)

    CAS  Google Scholar 

  2. T.S. Rathna Priya, A.R.L. Eliazer Nelson, K. Ravichandran, U. Antony, J. Ethn. Foods 6, 1 (2019)

    Google Scholar 

  3. S. Saha, S. Sarkhel, B. Sahoo, A. Kumari, S. Jha, A. Mukherjee, D. Biswas, R. Saha, A. Chatterjee, B. Sarkar, S.K. Jana, A. Mohan, A. Roy, LWT 175, 114432 (2023)

    CAS  Google Scholar 

  4. J. Ahmed, S. Al-Jassar, L. Thomas, Food Hydrocoll. 48, 72 (2015)

    CAS  Google Scholar 

  5. E. Taghinezhad, M.H. Khoshtaghaza, S. Minaei, T. Suzuki, T. Brenner, Rice Sci. 23, 339 (2016)

    Google Scholar 

  6. H. Dutta, C.L. Mahanta, Rice Sci. 21, 187 (2014)

    Google Scholar 

  7. M.R. Toutounji, A. Farahnaky, A.B. Santhakumar, P. Oli, V.M. Butardo, C.L. Blanchard, Trends Food Sci. Technol. 88, 10 (2019)

    CAS  Google Scholar 

  8. H. Dutta, C.L. Mahanta, Food Res. Int. 49, 655 (2012)

    CAS  Google Scholar 

  9. L. Lamberts, I. Rombouts, K. Brijs, K. Gebruers, J.A. Delcour, Food Chem. 110, 916 (2008)

    CAS  PubMed  Google Scholar 

  10. A. Han, J.R. Jinn, A. Mauromoustakos, Y.J. Wang, Cereal Chem. 93, 47 (2016)

    CAS  Google Scholar 

  11. S. Saha, A. Roy, Meas. Food 5, 100021 (2022)

    Google Scholar 

  12. E. Taghinezhad, T. Brenner, J. Food Process Eng. 40, e12483 (2017)

    Google Scholar 

  13. S.K. Sivakamasundari, J.A. Moses, C. Anandharamakrishnan, J. Food Meas. Charact. 14, 3122 (2020)

    Google Scholar 

  14. T. Das, R. Subramanian, A. Chakkaravarthi, V. Singh, S.Z. Ali, P.K. Bordoloi, J. Food Eng. 75, 156 (2006)

    Google Scholar 

  15. N. Singh, L. Kaur, N. Singh Sodhi, K. Singh Sekhon, Food Chem. 89, 253 (2005)

    CAS  Google Scholar 

  16. G.G. Birch, R.J. Priestley, Starch Stärke 25, 98 (1973)

    CAS  Google Scholar 

  17. T. Palav, K. Seetharaman, Carbohydr. Polym. 67, 596 (2007)

    CAS  Google Scholar 

  18. B. Sahoo, A. Roy, J. Food Process Eng. 46, e14214 (2022)

    Google Scholar 

  19. S. Sarkhel, A. Roy, J. Food Eng. 365, 111823 (2024)

    CAS  Google Scholar 

  20. Q. Liu, Q. Kong, X. Li, J. Lin, H. Chen, Q. Bao, Y. Yuan, LWT 130, 109623 (2020)

    CAS  Google Scholar 

  21. W. Prasert, P. Suwannaporn, J. Food Eng. 95, 54 (2009)

    CAS  Google Scholar 

  22. A. Ayoub, Y. Liu, D.D. Miller, S.S.H. Rizvi, Starch Stärke 65, 517 (2013)

    CAS  Google Scholar 

  23. S. Saha, A. Roy, J. Food Process Eng. 43, e13479 (2020)

    CAS  Google Scholar 

  24. H.H. Chen, Y.K. Chen, H.C. Chang, Food Chem. 135, 74 (2012)

    CAS  Google Scholar 

  25. A. Chakkaravarthi, S. Lakshmi, R. Subramanian, V.M. Hegde, J. Food Eng. 84, 181 (2008)

    Google Scholar 

  26. L.M. Cunha, F.A.R. Oliveira, J.C. Oliveira, J. Food Eng. 37, 175 (1998)

    Google Scholar 

  27. K.G. Kaptso, Y.N. Njintang, A.E. Komnek, J. Hounhouigan, J. Scher, C.M.F. Mbofung, J. Food Eng. 86, 91 (2008)

    CAS  Google Scholar 

  28. P. Oli, R. Ward, B. Adhikari, P. Torley, J. Food Eng. 173, 49 (2016)

    Google Scholar 

  29. Y. Ma, D. Xu, S. Sang, Y. Jin, X. Xu, B. Cui, Food Hydrocoll. 112, 106362 (2021)

    CAS  Google Scholar 

  30. C. de S. Batista, J.P. dos Santos, C.L. Dittgen, R. Colussi, P.Z. Bassinello, M.C. Elias, N.L. Vanier, Food Chem. 286, 98 (2019)

    Google Scholar 

  31. B. Sahoo, A. Mohan, R. Anupam, LWT 184, 114953 (2023)

    CAS  Google Scholar 

  32. L. Bian, H.J. Chung, Food Hydrocoll. 60, 345 (2016)

    CAS  Google Scholar 

  33. V. Vidal, B. Pons, J. Brunnschweiler, S. Handschin, X. Rouau, C. Mestres, J. Agric. Food Chem. 55, 336 (2006)

    Google Scholar 

  34. R.M. Hodge, G.H. Edward, G.P. Simon, Polymer (Guildford) 37, 1371 (1996)

    CAS  Google Scholar 

  35. L. Zhu, G. Wu, L. Cheng, H. Zhang, L. Wang, H. Qian, X. Qi, Food Chem. 289, 616 (2019)

    CAS  PubMed  Google Scholar 

  36. L. Zhu, L. Cheng, H. Zhang, L. Wang, H. Qian, X.G. Qi, G. Wu, Food Hydrocoll. 92, 41 (2019)

    CAS  Google Scholar 

  37. Z. Hu, Y. Yang, L. Lu, Y. Chen, Z. Zhu, J. Huang, Food Chem. 346, 128912 (2021)

    CAS  PubMed  Google Scholar 

  38. G. Behera, P.P. Sutar, Dry. Technol. 37, 707 (2019)

    CAS  Google Scholar 

  39. M. Bello, M.P. Tolaba, C. Suarez, LWT 37, 811 (2004)

    CAS  Google Scholar 

  40. S. Sarkhel, A. Roy, J. Food Process Eng. 45, e14030 (2022)

    CAS  Google Scholar 

  41. A. Kumari, A. Roy, Food Sci. Biotechnol. 1, 3 (2023)

    Google Scholar 

  42. R.J. Priestley, Food Chem. 1, 5 (1976)

    CAS  Google Scholar 

  43. S. Horrungsiwat, N. Therdthai, W. Ratphitagsanti, Int. J. Food Sci. Technol. 51, 1851 (2016)

    CAS  Google Scholar 

  44. S. Jha, S. Sarkhel, S. Saha, B. Sahoo, A. Kumari, K. Chatterjee, P. Mitra Mazumder, G. Sarkhel, A. Mohan, A. Roy, Food Res. Int. 175, 113771 (2023)

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their sincere appreciation for the financial support from the Indian Council for Medical Research [Grant Number 5/9/1302/2020-Nut]. The authors are also thankful to Central Instrumentation Facility, Birla Institute of Technology, and Mesra in Ranchi for helping to support the materials.

Author information

Authors and Affiliations

Authors

Contributions

Ankanksha Kumari and Anupam Roy wrote the main manuscript text, and Ankanksha Kumari did the experimentation and prepared figures. Anupam Roy supervised the work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Anupam Roy.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, A., Roy, A. Impact of the degree of starch gelatinization on the texture, soaking, and cooking characteristics of high amylose rice: an experimental and numerical study. Food Measure 18, 8200–8217 (2024). https://doi.org/10.1007/s11694-024-02794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02794-2

Keywords

Navigation