[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Deformability of Oxide Inclusions in Tire Cord Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The deformation of oxide inclusions in tire cord steels during hot rolling was analyzed, and the factors influencing their deformability at high and low temperatures were evaluated and discussed. The aspect ratio of oxide inclusions decreased with the increasing reduction ratio of the steel during hot rolling owing to the fracture of the inclusions. The aspect ratio obtained after the first hot-rolling process was used to characterize the high-temperature deformability of the inclusions. The deformation first increased and then decreased with the increasing (MgO + Al2O3)/(SiO2 + MnO) ratio of the inclusions. It also increased with the decreasing melting temperatures of the inclusions. Young’s modulus was used to evaluate the low-temperature deformability of the inclusions. An empirical formula was fitted to calculate the Young’s moduli of the oxides using the mean atomic volume. The moduli values of the inclusions causing wire fracture were significantly greater than the average. To reduce fracture in tire cord steel wires during cold drawing, it is proposed that inclusions be controlled to those with high SiO2 content and extremely low Al2O3 content. This proposal is based on the hypothesis that the deformabilities of oxides during cold drawing are inversely proportional to their Young’s moduli. The future study thus proposed includes an experimental confirmation for the abovementioned predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Yilmaz and H. M. Ertunc: Mater. Des., 2007, vol. 28, pp. 599-608.

    Article  Google Scholar 

  2. L. Zhang: Steel Res. Int., 2006, vol. 77, pp. 158-69.

    Article  Google Scholar 

  3. S. Kimura, T. Mimura, I. Hoshikawa, N. Ibaraki and T. Chouda: R and D: Res. Dev. Kobe Steel Eng. Rep., 2004, vol. 54, pp. 25-28.

    Google Scholar 

  4. Y.-B. Kang and H.-G. Lee: ISIJ Int., 2004, vol. 44, pp. 1006-15.

    Article  Google Scholar 

  5. S.-h. Chen, M. Jiang, X.-f. He and X.-h. Wang: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 490-98.

    Article  Google Scholar 

  6. J. S. Park and J. H. Park: Metall. Mater. Trans. B, 2014, vol. 45, pp. 953-60.

    Article  Google Scholar 

  7. R. Maiti and E. B. Hawbolt: J. Mater. Energy Systems, 1985, vol. 6, pp. 251-62.

    Article  Google Scholar 

  8. T. Malkiewicz and S. Rudnik: J. Iron Steel Inst., 1963, vol. 201, pp. 33-38.

    Google Scholar 

  9. K.-i. Yamamoto, H. Yamamura and Y. Suwa: ISIJ Int., 2011, vol. 51, pp. 1987-94.

    Article  Google Scholar 

  10. H. Iwai, B. Tsujino, S. Isa and T. Ao: Tetsu-to-Hagane, 1969, vol. 55, pp. 23-36.

    Article  Google Scholar 

  11. C. Luo and U. Ståhlberg: J. Mater. Process. Technol., 2001, vol. 114, pp. 87-97.

    Article  Google Scholar 

  12. H.-l. Yu, X.-h. Liu, H.-y. Bi and L.-q. Chen: J. Mater. Process. Technol., 2009, vol. 209, pp. 455-61.

    Article  Google Scholar 

  13. K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao and Z. Cao: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2198-207.

    Article  Google Scholar 

  14. K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao and Z. Cao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 282-90.

    Article  Google Scholar 

  15. S. Maeda, T. Soejima and T. Saito: Steelmaking Conf. Proc., 1989, vol. 72, pp. 379-85.

    Google Scholar 

  16. B. Gerard, R. Paul and U. Georges: Rev. Metall.-CIT, 1981, vol. 78, pp. 421-33.

    Article  Google Scholar 

  17. S. Kimura, I. Hoshikawa, N. Ibaraki, S. Hattori and T. Choda: Tetsu-to-Hagane, 2002, vol. 88, pp. 755-62.

    Article  Google Scholar 

  18. W. Yang, C. Guo, L. Zhang, H. Ling and C. Li: Metall. Mater. Trans. B, 2017, pp. Published online.

  19. X. Wang, X. Li, Q. Li, F. Huang, H. Li and J. Yang: Steel Res. Int., 2014, vol. 85, pp. 155-63.

    Article  Google Scholar 

  20. J.S. Tse: J. Superhard Mater., 2010, vol. 32, pp. 177-91.

    Article  Google Scholar 

  21. Y. Tian, B. Xu and Z. Zhao: Int. J. Refract. Met. Hard Mater., 2012, vol. 33, pp. 93-106.

    Article  Google Scholar 

  22. F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang and Y. Tian: Phys. Rev. Lett., 2003, vol. 91, pp. 015502.

    Article  Google Scholar 

  23. F. Gao: Phys. Rev. B, 2004, vol. 69, pp. 094113.

    Article  Google Scholar 

  24. F. Gao: Phys. Rev. B, 2006, vol. 73, pp. 132104.

    Article  Google Scholar 

  25. A. Šimůnek and J. Vackář: Phys. Rev. Lett., 2006, vol. 96, pp. 085501.

    Article  Google Scholar 

  26. F.-Z. Dai and Y. Zhou: Sci. Rep., 2016, vol. 6, pp. 33085.

    Article  Google Scholar 

  27. M. Ashby: Proc. R. Soc. Lon. A, 1998, vol. 454, pp. 1301-21.

    Article  Google Scholar 

  28. X. Jiang, J. Zhao and X. Jiang: Comput. Mater. Sci., 2011, vol. 50, pp. 2287-90.

    Article  Google Scholar 

  29. M. Ashizuka, Y. Aimoto and T. Okuno: J. Ceram. Soc. Jpn., 1989, vol. 97, pp. 544-48.

    Article  Google Scholar 

  30. A. Makishima and J. D. Mackenzie: J. Non-Cryst. Solids, 1973, 13, pp. 35-45.

    Article  Google Scholar 

  31. S. Inaba, S. Fujino and K. Morinaga: J. Am. Ceram. Soc., 1999, vol. 82, pp. 3501-07.

    Article  Google Scholar 

  32. J. B. Wachtman and D. G. Lam: J. Am. Ceram. Soc., 1959, vol. 42, pp. 254-60.

    Article  Google Scholar 

  33. W. B. Hillig: J. Am. Ceram. Soc., 1993, vol. 76, pp. 129-38.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from the National Science Foundation China (Grant No. 51725402, No. 51504020 and No. 51704018), the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-15-001C2, No. FRF-TP-15-067A1, and No. FRF-TP-17-039A1), Guangxi Key Research and Development Plan (Grant No. AB17129006), the National Postdoctoral Program for Innovative Talents (Grant No. BX201700028), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China. The authors also offer their thanks to Professor Alberto Conejo for improving English language and grammar in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yang.

Additional information

Manuscript submitted December 16, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Guo, C., Yang, W. et al. Deformability of Oxide Inclusions in Tire Cord Steels. Metall Mater Trans B 49, 803–811 (2018). https://doi.org/10.1007/s11663-017-1134-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1134-2

Keywords

Navigation