Abstract
The deformation of oxide inclusions in tire cord steels during hot rolling was analyzed, and the factors influencing their deformability at high and low temperatures were evaluated and discussed. The aspect ratio of oxide inclusions decreased with the increasing reduction ratio of the steel during hot rolling owing to the fracture of the inclusions. The aspect ratio obtained after the first hot-rolling process was used to characterize the high-temperature deformability of the inclusions. The deformation first increased and then decreased with the increasing (MgO + Al2O3)/(SiO2 + MnO) ratio of the inclusions. It also increased with the decreasing melting temperatures of the inclusions. Young’s modulus was used to evaluate the low-temperature deformability of the inclusions. An empirical formula was fitted to calculate the Young’s moduli of the oxides using the mean atomic volume. The moduli values of the inclusions causing wire fracture were significantly greater than the average. To reduce fracture in tire cord steel wires during cold drawing, it is proposed that inclusions be controlled to those with high SiO2 content and extremely low Al2O3 content. This proposal is based on the hypothesis that the deformabilities of oxides during cold drawing are inversely proportional to their Young’s moduli. The future study thus proposed includes an experimental confirmation for the abovementioned predictions.
Similar content being viewed by others
References
M. Yilmaz and H. M. Ertunc: Mater. Des., 2007, vol. 28, pp. 599-608.
L. Zhang: Steel Res. Int., 2006, vol. 77, pp. 158-69.
S. Kimura, T. Mimura, I. Hoshikawa, N. Ibaraki and T. Chouda: R and D: Res. Dev. Kobe Steel Eng. Rep., 2004, vol. 54, pp. 25-28.
Y.-B. Kang and H.-G. Lee: ISIJ Int., 2004, vol. 44, pp. 1006-15.
S.-h. Chen, M. Jiang, X.-f. He and X.-h. Wang: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 490-98.
J. S. Park and J. H. Park: Metall. Mater. Trans. B, 2014, vol. 45, pp. 953-60.
R. Maiti and E. B. Hawbolt: J. Mater. Energy Systems, 1985, vol. 6, pp. 251-62.
T. Malkiewicz and S. Rudnik: J. Iron Steel Inst., 1963, vol. 201, pp. 33-38.
K.-i. Yamamoto, H. Yamamura and Y. Suwa: ISIJ Int., 2011, vol. 51, pp. 1987-94.
H. Iwai, B. Tsujino, S. Isa and T. Ao: Tetsu-to-Hagane, 1969, vol. 55, pp. 23-36.
C. Luo and U. Ståhlberg: J. Mater. Process. Technol., 2001, vol. 114, pp. 87-97.
H.-l. Yu, X.-h. Liu, H.-y. Bi and L.-q. Chen: J. Mater. Process. Technol., 2009, vol. 209, pp. 455-61.
K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao and Z. Cao: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2198-207.
K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao and Z. Cao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 282-90.
S. Maeda, T. Soejima and T. Saito: Steelmaking Conf. Proc., 1989, vol. 72, pp. 379-85.
B. Gerard, R. Paul and U. Georges: Rev. Metall.-CIT, 1981, vol. 78, pp. 421-33.
S. Kimura, I. Hoshikawa, N. Ibaraki, S. Hattori and T. Choda: Tetsu-to-Hagane, 2002, vol. 88, pp. 755-62.
W. Yang, C. Guo, L. Zhang, H. Ling and C. Li: Metall. Mater. Trans. B, 2017, pp. Published online.
X. Wang, X. Li, Q. Li, F. Huang, H. Li and J. Yang: Steel Res. Int., 2014, vol. 85, pp. 155-63.
J.S. Tse: J. Superhard Mater., 2010, vol. 32, pp. 177-91.
Y. Tian, B. Xu and Z. Zhao: Int. J. Refract. Met. Hard Mater., 2012, vol. 33, pp. 93-106.
F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang and Y. Tian: Phys. Rev. Lett., 2003, vol. 91, pp. 015502.
F. Gao: Phys. Rev. B, 2004, vol. 69, pp. 094113.
F. Gao: Phys. Rev. B, 2006, vol. 73, pp. 132104.
A. Šimůnek and J. Vackář: Phys. Rev. Lett., 2006, vol. 96, pp. 085501.
F.-Z. Dai and Y. Zhou: Sci. Rep., 2016, vol. 6, pp. 33085.
M. Ashby: Proc. R. Soc. Lon. A, 1998, vol. 454, pp. 1301-21.
X. Jiang, J. Zhao and X. Jiang: Comput. Mater. Sci., 2011, vol. 50, pp. 2287-90.
M. Ashizuka, Y. Aimoto and T. Okuno: J. Ceram. Soc. Jpn., 1989, vol. 97, pp. 544-48.
A. Makishima and J. D. Mackenzie: J. Non-Cryst. Solids, 1973, 13, pp. 35-45.
S. Inaba, S. Fujino and K. Morinaga: J. Am. Ceram. Soc., 1999, vol. 82, pp. 3501-07.
J. B. Wachtman and D. G. Lam: J. Am. Ceram. Soc., 1959, vol. 42, pp. 254-60.
W. B. Hillig: J. Am. Ceram. Soc., 1993, vol. 76, pp. 129-38.
Acknowledgments
The authors are grateful for the support from the National Science Foundation China (Grant No. 51725402, No. 51504020 and No. 51704018), the Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-15-001C2, No. FRF-TP-15-067A1, and No. FRF-TP-17-039A1), Guangxi Key Research and Development Plan (Grant No. AB17129006), the National Postdoctoral Program for Innovative Talents (Grant No. BX201700028), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China. The authors also offer their thanks to Professor Alberto Conejo for improving English language and grammar in this article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted December 16, 2016.
Rights and permissions
About this article
Cite this article
Zhang, L., Guo, C., Yang, W. et al. Deformability of Oxide Inclusions in Tire Cord Steels. Metall Mater Trans B 49, 803–811 (2018). https://doi.org/10.1007/s11663-017-1134-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11663-017-1134-2