Abstract
The hypoeutectic white cast iron was subjected to various destabilization heat treatment temperatures of 1173 K, 1273 K, and 1373 K (900 °C, 1000 °C, and 1100 °C) for 2 hours. The as-cast and destabilized specimens were characterized by optical metallography, classical direct comparison, and the Rietveld method. The volume fractions of carbides were measured by optical metallography. Moreover, the volume fractions of retained austenite and martensite were measured by the classical direct comparison method. Despite the limitations of optical metallography and the classical direct comparison method, the Rietveld method was successively and accurately applied to determine the volume fractions of all phases. In addition, the Rietveld analysis yielded certain results, such as the crystallographic properties of the phases that can be used to explain the relationship between the microstructural parameters and the wear behavior. Abrasive wear tests with different sliding speeds were carried out on the as-cast and destabilized alloys to identify the effect of microstructural parameters on the wear behavior. The results indicated that the morphologies of secondary carbides, the crystallographic properties of the phases, and the proper combination of the amount of martensite, retained austenite, and carbides were the principle parameters that affect the hardness and wear behavior of the alloy.
Similar content being viewed by others
References
Ö.N. Doğan, J.A. Hawk and G. Laird II: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1315–1327.
Ö.N. Doğan, G. Laird II and J.A. Hawk: Wear, 1995, vol. 181–183, pp. 342–349.
I. Fernandez and F.J. Belzunce: Mater. Charact., 2008, vol. 59, pp. 669-674.
A. Bedolla-Jacuinde, M.W. Rainforth and I. Mejia: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 856–872.
C.P. Tabrett and I.R. Sare: Scr. Mater., 1998, vol. 38, no. 12, pp. 1747-1753.
C.P. Tabrett and I.R. Sare: Wear, 1997, vol. 203-204, pp. 206-219.
S. Inthidech, P. Sricharoenchai and Y. Matsubara: Mater.Trans., 2006, vol. 47, no. 1, pp. 72-81.
X. Zhi, J. Xing, Y. Gao, H. Fu, J. Peng and B. Xiao: Mater. Sci. Eng. A., 2008, vol. 487, pp. 171-179.
C. Scandian, C. Boher, J.D.B. de Mello and F. Rezai-Aria: Wear, 2009, vol. 267, pp. 401-408.
K-H. Zum Gahr and G.T. Eldis: Wear, 1980, vol. 64, pp. 175-194.
C.P. Tabrett, I.R. Sare and M.R. Ghomashchi: Int. Mater. Rev., 1996, vol. 41, no. 2, pp. 59-82.
B. Lu, J. Luo and S. Chiovelli: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3029–3038.
C.K. Kim, S. Lee and J.Y Jung: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 633–643.
B. Hinckley, K.F. Dolman, R. Wuhrer, W. Yeung and A. Ray: Mater. Forum., 2008, vol. 32, pp. 55-71.
G. Laird II, R.L. Nielsen and N.H. Macmillan: Metall. Trans., 1991, vol. 22A, 1709-1719.
A. Neville, F. Reza, S. Chiovelli and T. Revega: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2339–2347.
A. Wiengmoon, J.T.H. Pearce and T. Chairuangsri: Mater. Chem. and Phys., 2011, vol. 125, pp. 739-748.
A. Wiengmoon, T. Chairuangsri, A. Brown, R. Brydson, D.V. Edmonds and J.T.H. Pearce: Acta Mater., 2005, vol. 53, pp. 4143-4154.
G.L.F. Powell and G.Laird II: J. Mater. Sci., 1992, vol. 27, pp. 29-35.
A.E. Karantzalis, A. Lekatou and H.Mavros: J. Mater. Eng. and Perform., 2009, vol. 18 no. 2, pp. 174-181.
A. Bedolla-Jacuinde, L. Arias and B. Hernandez: J. Mater. Eng. and Perform., 2003, vol. 12, no. 4, pp. 371-382.
A.E. Karantzalis, A. Lekatou and E.Diavati: J. Mater. Eng. and Perform., 2009, vol. 18, no. 8, pp. 1078-1085.
H-S. Yang, J. Wang, B-L. Shen, H–H. Liu, S-J. Gao and S-J. Huang: Wear, 2006, vol. 261, pp. 1150-1154.
J. Wang, J. Xiong, H. Fan, H-S. Yang, H–H. Liu and B-L.Shen: J. Mater. Process. Technol., 2009, vol. 209, pp. 3236-3240.
M. Palcut, M. Vach, R. Cicka and J.Janovec: Arch. Metall. and Mater., 2008, vol. 53, no.4, pp. 1157-1164.
H-H. Liu, J. Wang, H-S. Yang, B-L. Shen, S-J. Gao and S-J. Huang: J. Iron and Steel Res. Int., 2006, vol. 13, no. 6, pp. 43-48.
S-K. Yu: Korean J. Mater. Res., 2003, vol. 13, no. 9, pp. 581-586.
H–H. Liu, J. Wang, B-L. Shen, H-S. Yang, S-J. Gao and S-J Huang: Mater. and Des., 2007, vol. 28, pp. 1059-1064.
Y. Lv, Y. Sun, J. Zhao, G. Yu, J. Shen and S.Hu: Mater. and Des., 2012, vol. 39, pp. 303-308.
A. Bedolla-Jacuinde, R. Correa, J.G. Quezada and C. Maldonado: Mater. Sci. and Eng. A., 2005, vol. 398, pp. 297-308.
C. Kim: J. Heat Treat., 1979, vol. 1, no. 2, pp. 43-51.
Q-Y. Hou, Z-Y. Huang and J-T. Wang: J. Iron and Steel Res. Int., 2009, vol. 16, no.4, pp. 33-38.
M-X. Zhang, P.M. Kelly, L.K. Bekessy and J.D. Gates: Mater. Charact., 2000, vol. 45, pp. 39-49.
A.F. Mulaba-Bafubiandi, F.B. Waanders and C. Jones: Hyperfine Interact., 2002, vol. 139/140, pp. 455-462.
A. Bedolla-Jacuinde, B. Hernandez and L. Bejar-Gomez: Z. Metallkd., 2005, vol. 96, pp. 1380–1385.
S.D. Carpenter, D. Carpenter and J.T.H. Pearce: Mater. Chem. and Phys., 2004, vol. 85, pp. 32-40.
S.D. Carpenter and D. Carpenter: Mater. Lett., 2003, vol. 57, pp. 4460-4465.
K. Momma and F.Izumi: J. Appl. Crystallogr., 2011, vol. 44, no. 6, pp. 1272-1276.
R.A. Young: The Rietveld method, 1st ed., International Union of Crystallography, Oxford, 1993, p. 104.
L. Lutterotti and P. Scardi: J. Appl. Crystallogr., 1990, vol. 23, pp. 246-252.
R.J. Hill and C.J. Howard: J. Appl. Crystallogr., 1987, vol. 20, pp. 467-474.
E. Prince: International tables for crystallography, Vol C: Mathematical, physical and chemical Tables, 3rd ed., Kluwer, Dordrecht, 2004, p. 1000.
ASTM Designation (E 975-03): Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM International. West Conshohocken, PA, 2003.
Powder Diffraction Files: PDF No: 04-003-1443: ICDD PDF-4+ 2011, International Centre for Diffraction Data (ICDD).
Powder Diffraction Files: PDF No: 04-007-2490: ICDD PDF-4+ 2011, International Centre for Diffraction Data (ICDD).
Powder Diffraction Files: PDF No: 00-005-0720: ICDD PDF-4+ 2011, International Centre for Diffraction Data (ICDD).
J.J. Coronado and A. Sinatora: Wear, 2011, vol. 271, pp. 1794–1803.
Acknowledgments
The authors would like to thank Dr. İbrahim Celikyurek for casting the samples. Additionally, the authors would like to thank Orhan Oruc for performing X-ray diffraction analysis.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted January 29, 2013.
Rights and permissions
About this article
Cite this article
Gasan, H., Erturk, F. Effects of a Destabilization Heat Treatment on the Microstructure and Abrasive Wear Behavior of High-Chromium White Cast Iron Investigated Using Different Characterization Techniques. Metall Mater Trans A 44, 4993–5005 (2013). https://doi.org/10.1007/s11661-013-1851-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-013-1851-3