[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Bearings in Aerospace, Application, Distress, and Life: A Review

  • Review
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Despite enormous research, material, and manufacturing advancements in bearings, these continue to fail in critical aerospace applications. Material and processing aspects of bearing, which are often secondary, then become the central theme of investigation in place of a systemic and holistic view. Therefore, unlike conventional failure analysis, the present review critically examines potential issues in functionality, operation, unusual assembly configurations resulting in opposing inputs to the rolling elements, high DN (diameter × rpm) situations, distress due to slip, skid, and fatigue. Contra-rotating bearing can alleviate the effect of opposing inputs in aeroengine bearings where both the races rotate. It covers both state-of-the-art and conventional concepts. A brief on bearing materials, both conventional and unconventional, is also presented. Various techniques for monitoring bearing health and fault diagnosis are outlined. Life testing of bearing is mandatory to improve the design, material selection, manufacturing, and analysis. While prediction of the B10 life of bearings using Weibull analysis is more prevalent among industries, aerospace industry prefers B1.0 life. A brief on future possibilities is also presented. The present review aims to bring an application perspective on aerospace bearings to prevent their failures and enhance life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. R.L. Norton, Machine Design: An Integrated Approach, 2nd edn. (Pearson Education Inc, New Delhi, 2000)

    Google Scholar 

  2. R.G. Budynas, J.K. Nisbett, Shigley’s Mechanical Engineering Design, 9th edn. (TMG, New Delhi, 2011)

    Google Scholar 

  3. P. Eschmann, L. Hasbargen, Weignad, Ball and Roller Bearings: Theory, Design, and Application (University of Michigan, 1985).

  4. M.M. Khonsari, E.R. Booser, Applied Tribology, Bearing Design and Lubrication. (Wiley, New York, 2017) https://doi.org/10.1002/9781118700280

    Book  Google Scholar 

  5. B.J. Hamrock, W.J. Anderson, Rolling Element Bearings, Lewis Research Centre (NASA Reference Publication, 1983)

  6. T.A. Harris, Rolling Bearing Analysis. (Wiley, New York, 1966)

    Google Scholar 

  7. T.A. Harris, M.N. Kotzalas, Advanced Concepts of Bearing Technology Rolling Bearing Analysis, 5th edn. (Taylor & Francis Group, LLC, Danvers, 2006)

    Book  Google Scholar 

  8. A.B. Jones, A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions. ASME J. Basic Eng. 82, 309–320 (1960). https://doi.org/10.1115/1.3662587

    Article  Google Scholar 

  9. L. Houpert, A uniform analytical approach for ball and roller bearings calculations. ASME J. Tribol. 119, 851–858 (1997). https://doi.org/10.1115/1.2833896

    Article  Google Scholar 

  10. Y. Wei, Y. Qin, R. Balendra, Q. Jiang, FE analysis of a novel roller form: a deep end-cavity roller for roller-type bearings. J. Mater. Process. Technol. 145, 233–241 (2004). https://doi.org/10.1016/S0924-0136(03)00674-5

    Article  Google Scholar 

  11. G. Shi, X. Yu, H. Meng, F. Zhao, J. Wang, J. Jiao, H. Jiang, Effect of surface modification on friction characteristics of sliding bearings: A review. Tribol. Int. 177, (2023). https://doi.org/10.1016/j.triboint.2022.107937

  12. Ł Breńkacz, Ł Witanowski, M. Drosińska-Komor, N. Szewczuk-Krypa, Research and applications of active bearings: a state-of-the-art review. Mech. Syst. Signal Pross. (2021). https://doi.org/10.1016/j.ymssp.2020.107423

    Article  Google Scholar 

  13. T.W. Dimond, P.N. Sheth, P.E. Allaire, M. He, Identification methods and test results for tilting pad and fixed geometry journal bearing dynamic coefficients—a review. Shock Vib. 16, 13–43 (2009). https://doi.org/10.3233/SAV-2009-0452

    Article  Google Scholar 

  14. Z. Liu, Y. Wang, L. Cai, Y. Zhao, Q. Cheng, X. Dong, A review of hydrostatic bearing system: researches and applications. Adv. Mech. Eng. 9, 1–27 (2017). https://doi.org/10.1177/1687814017730536

    Article  Google Scholar 

  15. L. Breńkacz, G. Żywica, Comparison of experimentally and numerically determined dynamic coefficients of the hydrodynamic slide bearings operating in the nonlinear rotating system, in Proceeding of ASME Turbomachinery Technical Conference and Exposition, Charlotte, NC, USA, 2017, pp. 1–12. https://doi.org/10.1115/GT2017-64251

  16. V. Kumar, Porous metal bearings—a critical review. Wear. 63, 271–287 (1980). https://doi.org/10.1016/0043-1648(80)90055-1

    Article  Google Scholar 

  17. L. Gu, E. Guenat, J. Schiffmann, A review of grooved dynamic gas bearings. Appl. Mech. Rev. 10(1115/1), 4044191 (2020)

    Google Scholar 

  18. H. Cheng, Y. Zhang, W. Lu, Z. Yang, Research on time-varying stiffness of bearing based on local defect and varying compliance coupling. Measurement. 143, 155–179 (2019). https://doi.org/10.1016/j.measurement.2019.04.079

    Article  Google Scholar 

  19. K. Czołczyński, How to obtain stiffness and damping coefficients of gas bearings. Wear. 201, 265–275 (1996). https://doi.org/10.1016/S0043-1648(96)07267-5

    Article  Google Scholar 

  20. A. Babin, A. Rodichev, and V. Tyurin, Numerical and experimental studies of axial stability of rotors on thrust fluid-film bearings with active control, in International Russian Automation Conference, IEEE, pp. 1–6 (2018). https://doi.org/10.1109/RUSAUTOCON.2018.8501711

  21. H. Cheng, Y. Zhang, W. Lu, Z. Yang, Research on ball bearing model based on local defects. SN Appl. Sci. 1, 1219 (2019). https://doi.org/10.1007/s42452-019-1251-4

    Article  Google Scholar 

  22. N. Tandon, A. Choudhury, A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol. Int. 32, 469–480 (1999). https://doi.org/10.1016/S0301-679X(99)00077-8

    Article  Google Scholar 

  23. Aviation Maintenance Technician Handbook –General, U.S. Department of Transportation, Federal Aviation Administration (2018)

  24. JSSG - 2007 B, Department of Defense Joint Service Specification Guide Engines, Aircraft, Turbine., 6th December 2007

  25. P.K. Aggarwal, Dynamic (Vibration) Testing: Design—Certification of Aerospace System (NASA Technical Reports Server, NASA-Marshall Space Flight Center, 2010)

  26. P. Gloeckner, C. Rodway, The evolution of reliability and efficiency of aerospace bearing systems. Engineering. 9(2017), 962–991 (2017). https://doi.org/10.4236/eng.2017.911058

    Article  CAS  Google Scholar 

  27. P. Gloeckner, W. Sebald, A new method of calculating the attainable life and reliability in aerospace bearings. Eur. J. Eng. Res. Sci. 5, 745–750 (2020). https://doi.org/10.24018/ejeng.2020.5.6.1977

    Article  Google Scholar 

  28. B.A. Tassone, Roller bearing slip and skidding damage. J. Aircr. (1975). https://doi.org/10.2514/3.44445

    Article  Google Scholar 

  29. P. Gloeckner, The influence of the raceway curvature ratio on power loss and temperature of a high-speed jet engine ball bearing. Tribol. Trans. 56, 27–32 (2013). https://doi.org/10.1080/10402004.2012.725123

    Article  CAS  Google Scholar 

  30. P. Gloeckner, F.-J. Ebert, Micro-sliding in high-speed aircraft engine ball bearings. Tribol. Trans. 53(2010), 369–375 (2010). https://doi.org/10.1080/10402000903312364

    Article  CAS  Google Scholar 

  31. F.-J. Ebert, Performance of silicon nitride (Si3N4) components in aerospace bearing applications, in Proceedings of the Gas Turbine and Aeroengine Congress and Exposition (The American Society of Mechanical Engineers, Brussels, 90-GT-166, 1990). https://doi.org/10.1115/90-GT-166

  32. P. Gloeckner, K. Dullenkopf, M. Flouros, Direct outer ring cooling of a high speed jet engine mainshaft ball bearing: experimental investigation results. J. Eng. Gas Turbines Power. 133, 062503-1–62507 (2011). https://doi.org/10.1115/1.4002355

    Article  Google Scholar 

  33. P. Glöeckner, Advanced Bearing Technologies for Aerospace Power Systems, in Proceedings of the 3rd International Conference “Power Transmission’09” (Chalkidiki, 2009), p 427–434.

  34. F.J. Ebert, “Fail-safe” concept and reliability in high-speed bearing arrangements for aerospace turbomachinery, in Vibration and Wear in High Speed Rotating Machinery. ATO ASI Series, vol 174, ed. by J.M. Montalvão e Silva, F.A. Pina da Silva (Springer, Dordrecht, 1990). https://doi.org/10.1007/978-94-009-1914-3_46

    Chapter  Google Scholar 

  35. R. Kudelski, R. Szczepanik, In-flight early detection of cracks in turbine aero-engine compressor blades, in Proceedings of the 12th World Conference on Non-Destructive Testing, Amsterdam, 1989, p 616–622. https://doi.org/10.1016/B978-0-444-87450-4.50143-0

  36. T. Dotzel, Thermal characteristics of high speed ball bearings in aircraft engine applications, in SAE E-34 Propulsion Lubricants Committee, Technical Symposium, Berlin, Oct. 2–3 (2002)

  37. T.J. Chase, Wear mechanisms found in angular contact ball bearings of the SSME's LOX turbopump, NASA TM-103596 (1992)

  38. X. Miao, M. Hu, A. Li, D. Wang, L. Weng, X. Li, G. Zhang, Investigation on the lubricity of self-lubricating ball bearings for cryogenic turbine pump. Tribol. Int. 121, 45–53 (2018). https://doi.org/10.1016/j.triboint.2018.01.041

    Article  CAS  Google Scholar 

  39. A.J. Volponi, Gas turbine engine health management: past, present, and future trends. J. Eng. Gas Turbines Power. 136, 051201 (2014). https://doi.org/10.1115/1.4026126

    Article  Google Scholar 

  40. R. Rzadkowski, E. Rokicki, L. Piechowski, R. Szczepanik, Analysis of middle bearing failure in rotor jet engine using tip-timing and tip-clearance techniques. Mech. Syst. Signal Process. 76–77, 213–227 (2016). https://doi.org/10.1016/j.ymssp.2016.01.014

    Article  Google Scholar 

  41. J. Antoni, J. Griffaton, H. André, L.D. Avendao-Valencia, F. Bonnardot, O. Cardona-Morales, G. Castellanos-Dominguez, A.P. Daga, Q. Leclre, C.M. Vicua, D.Q. Acua, A.P. Ompusunggu, E.F. Sierra-Alonso, Feedback on the surveillance 8 challenge: vibration-based diagnosis of a Safran aircraft engine. Mech. Syst. Signal Process. 97, 112–144 (2017). https://doi.org/10.1016/j.ymssp.2017.01.037,specialIssueonSurveillance

    Article  Google Scholar 

  42. F.-J. Ebert, Fundamentals of design and technology of rolling element bearings. Chin. J. Aeronaut. 23, 123–136 (2010). https://doi.org/10.1016/S1000-9361(09)60196-5

    Article  Google Scholar 

  43. H.I.H. Saravanamuttoo, G.F.C. Rogers, H. Cohen, P.V. Straznicky, A.C. Nix, Gas Turbine Theory, 7th edn. (Pearson Education Limited, 2017)

  44. Engine Structural Integrity Program (ENSIP), Department of Defense Handbook, MIL-HDBK-1783B, 22 September 2004

  45. H.K.D.H. Bhadeshia, Steels for bearings. Prog. Mater Sci. 57, 268–435 (2012). https://doi.org/10.1016/j.pmatsci.2011.06.002

    Article  CAS  Google Scholar 

  46. J.K. Lancaster, Chapter 11-composites for aerospace dry bearing applications, in Composite Materials Series, vol. 1, 1986, p 363–396. https://doi.org/10.1016/B978-0-444-42524-9.50015-6

  47. Aircraft track roller bearings. https://www.ahrinternational.com/aircraft_track_roller_bearings.html, 2022. Accessed 25th Feb 2022

  48. Track Roller Bearing. https://www.mklbearing.com/lfr5201-14-2rs-u-groove-track-roller-bearings-for-linear-motion_p147.html, 2022. Accessed 26th Feb 2022

  49. J.F. Braza, K. Giuntoli, J.R. Imundo, The evaluation of corrosion resistant rod end rolling element bearings, in Bearing Steels: Into the 21st Century, ASTM International (1998)

  50. E.A. Avallone, T. Baumeister III, Marks’ Standard Handbook for Mechanical Engineers, 9th edn. (McGraw-Hill, 1987)

  51. W.E. Littmann, The mechanism of contact fatigue (sp-237), in Interdisciplinary Approach to the Lubrication of Concentrated Contacts (NASA, New York, 1970), pp 309–377

  52. J.J. Chapman, Angular contact ball bearing dynamics, an experimental and theoretical investigation. Tribol. Ser. 30, 435–443 (1995). https://doi.org/10.1016/S0167-8922(08)70649-7

    Article  Google Scholar 

  53. T.I. Liu, J.M. Mengel, Intelligent monitoring of ball bearing conditions. Mech. Syst. Signal Process. 6, 419–431 (1992). https://doi.org/10.1016/0888-3270(92)90066-R

    Article  Google Scholar 

  54. Permanent Magnetic Bearing for Spacecraft Applications by U.S. Army Research Laboratory, Glenn Research Center, Cleveland, Ohio. https://www.bearing-news.com/super-precision-bearings-for-space-and-satellite-applications/

  55. A.P. Freeman, Gyro Ball bearings—technology today, in AGARD Conference Proceedings, No. 43 (AGARD, 1968).

  56. R.C. Baker, Turbine and related flowmeters: I. Industrial practice. Flow Meas. Instrum. 2(3), 147–161 (1991)

    Article  CAS  Google Scholar 

  57. Y.L. Lavrentyev, N.I. Petrov, Y.A. Nozhnitsky, Empirical correlation of heat generation in hybrid ball bearings, depending on the operational conditions in the aeroengine rotor supports. J. Phys. 1777, 012046 (2021). https://doi.org/10.1088/1742-6596/1777/1/012046

    Article  Google Scholar 

  58. R. Potocnik, P. Goncz, J. Flasker, S. Glodez, Fatigue life of double row slewing ball bearing with irregular geometry. Procedia Eng. (2010). https://doi.org/10.1016/j.proeng.2010.03.202

    Article  Google Scholar 

  59. R. Pandiyarajan, M.S. Starvin, K.C. Ganesh, Contact stress distribution of large diameter ball bearing using hertzian elliptical contact theory. Procedia Eng. 38, 264–269 (2012). https://doi.org/10.1016/j.proeng.2012.06.034

    Article  Google Scholar 

  60. M. Nosaka, S. Takada, M. Kikuchi, T. Sudo, M. Yoshida, Ultra-high-speed performance of ball bearings and annular seals in liquid hydrogen at up to 3 Million DN (120,000 rpm)©. Tribol. Trans. 47, 43–53 (2010). https://doi.org/10.1080/05698190490279047

    Article  CAS  Google Scholar 

  61. M.S. Patil, J. Mathew, P.K. Rajendrakumar, S. Desai, A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing. Int. J. Mech. Sci. 52, 1193–1201 (2010). https://doi.org/10.1016/j.ijmecsci.2010.05.005

    Article  Google Scholar 

  62. C. Bujoreanu, S. Cretu, D. Nelias, An investigation of scuffing failure in angular contact ball-bearings. Tribol. Ind. 25, 261–267 (2003)

  63. C. Bujoreanu, D.N. Olaru, S. Cretu, N.G. Popinceanu, D. Nélias, Scuffing approach for an angular contact ball bearing, in Proceedings of 12th International Colloquium on Tribology-2000, 2000, p 1245–1258.

  64. C. Bujoreanu, D. Nelias, L. Flamand, S. Cretu, Experimental study on scuffing limits in angular contact ball-bearing, in Proceedings of 13th International Collo-quium on Tribology (Technische Akademie Esslingen, 2002), p 1981–1986.

  65. P.I. Tzenov, T.S. Sankar, An improved model for nonplanar contact sliding in ball bearings. J. Tribol. 116, 219–224 (1994). https://doi.org/10.1115/1.2927199

    Article  Google Scholar 

  66. H.G. Gibson, Design Guide for Bearings Used in Cryogenic Turbopumps and Test Rigs, NASA/TP-2019-220549 (Marshall Space Flight Center, Huntsville, Alabama, 2019)

  67. B. Choe, J. Lee, D. Jeon, Y. Lee, Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, part I: effects of cage guidance and pocket clearances. Mech. Syst. Signal Process. 115, 545–569 (2019). https://doi.org/10.1016/j.ymssp.2018.06.018

    Article  Google Scholar 

  68. Deep groove ball bearings. https://www.skf.com/in/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings, 2022. Accessed 28th Feb 2022.

  69. P.R. Anoopnath, V. Suresh Babu, A.K. Vishwanath, Hertz contact stress of deep groove ball bearing. Mater. Today Proc. 5, 3283–3288 (2018). https://doi.org/10.1016/j.matpr.2017.11.570

    Article  Google Scholar 

  70. R. Mitrovic, A. Subic, I.D. Atanasovska, Analysis of deep groove ball bearing design for assembly. Adv. Mater. Res. 633, 77–86 (2013). https://doi.org/10.4028/www.scientific.net/AMR.633.77

    Article  Google Scholar 

  71. Y. Kang, P.-C. Shen, C.-C. Huang, S.-S. Shyr, Y.-P. Chang, A modification of the Jones-Harris method for deep-groove ball bearings. Tribol. Int. (2006). https://doi.org/10.1016/j.triboint.2005.12.005

    Article  Google Scholar 

  72. M. Tiwari, K. Gupta, O. Prakash, Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J. Sound Vib. 238, 723–756 (2000). https://doi.org/10.1006/jsvi.1999.3109

    Article  Google Scholar 

  73. https://www.skf.com/in/products/rolling-bearings/ball-bearings/angular-contact-ball-bearings/four-point-contact-ball-bearings, 2022. Accessed 28th Feb 2022

  74. G. Rivera, T.V. Canh, S.W. Hong, Contact load and stiffness of four-point contact ball bearings under loading. Int. J. Precis. Eng. Manuf. 23, 677–687 (2022). https://doi.org/10.1007/s12541-022-00643-0

    Article  Google Scholar 

  75. Y. Li, W. Li, Y. Zhu, G. He, S. Ma, J. Hong, Dynamic performance analysis of cage in four-point contact ball bearing. Lubricants. 10, 149 (2022). https://doi.org/10.3390/lubricants10070149

    Article  Google Scholar 

  76. J.I. Amasorrain, X. Sagartzazu, J. Damián, Load distribution in a four contact-point slewing bearing. Mech. Mach. Theory. 38, 479–496 (2003). https://doi.org/10.1016/S0094-114X(03)00003-X

    Article  Google Scholar 

  77. Three-point contact ball bearing. https://patents.google.com/patent/CN101457785A/en, 2022. Accessed 28th Feb 2022

  78. Needle roller bearings with three-point contact ball bearings. https://www.ltcbearing.com/needle-roller-bearings-with-three-point-contact-ball-bearings, 2022. Accessed 28th Feb 2022

  79. S. Li, Strength analysis of the roller bearing with a crowning and misalignment error. Eng. Fail. Anal. 123, 1–15 (2021)

    Article  Google Scholar 

  80. Cylindrical roller bearings. https://www.nsk.com/products/rollerbearing/cylindrical/index.html, 2022. Accessed 28th Feb 2022

  81. Cylindrical roller bearings. https://www.skf.com/in/products/rolling-bearings/roller-bearings/cylindrical-roller-bearings, 2022. Accessed 28th Feb 2022

  82. Spherical roller bearings. https://www.skf.com/in/products/rolling-bearings/roller-bearings/spherical-roller-bearings, 2022. Accessed 26th Feb 2022

  83. J. Woodhead, J. Booker, Modelling of nosing for the assembly of aerospace bearings. Exp. Appl. Mech. 4, 327–337 (2013). https://doi.org/10.1007/978-1-4614-4226-4_38

    Article  Google Scholar 

  84. Needle roller bearings. https://www.skf.com/in/products/rolling-bearings/roller-bearings/needle-roller-bearings, 2022. Accessed 27th Feb 2022

  85. C. Neugebauer, M. Falkner, L. Supper, G. Traxler, Bearing development for a rocket engine gimbal, in Proceedings of the 38th Aerospace Mechanisms Symposium, Langley Research Center, May 17–19, 2006

  86. S. Iqbal, F. Al-Bender, J. Croes, B. Pluymers, W. Desmet, Frictional power loss in solidgrease-lubricated needle roller bearing. Lubr. Sci. 25(5), 351–367 (2013)

    Article  Google Scholar 

  87. H. Nguyen-Schäfer, Computational Tapered and Cylinder Roller Bearings (2019), p 1–39. https://doi.org/10.1007/978-3-030-05444-1_1

  88. R.S. Zhou, M.R. Hoeprich, Torque of tapered roller bearings. J. Tribol. 113, 590–597 (1991). https://doi.org/10.1115/1.2920664

    Article  Google Scholar 

  89. S. Aihara, A new running torque formula for tapered roller bearings under axial load. J. Tribol. (Trans. ASME). 109, 471–476 (1987). https://doi.org/10.1115/1.3261475

    Article  Google Scholar 

  90. R. Lenglade, G. Kreider, R. Pech, Bidirectional tapered roller thrust bearing for gas turbine engines, J. Propuls. 5 (1989).

  91. Airframe Control Ball Bearings: Single and Double Row. https://www.astbearings.com/airframe-control-ball-bearings.html, 2022. Accessed 26th Feb 2022.

  92. How Integrated Bearings Can Improve Performance. https://www.theindustryoutlook.com/machinery-and-equipment/panorama/how-integrated-bearings-can-improve-performance-nwid-1346.html. Accessed 2nd Oct 2022

  93. Integrated Bearings for Medical Devices. https://www.kmsbearings.com/applications/medical-bearings/intergrated-bearings-for-medical-devices.html. Accessed 3rd Oct 2022

  94. Rod ends. https://www.skf.com/in/products/plain-bearings/spherical-plain-bearings-rod-ends/rod-ends, 2022. Accessed 26th Feb 2022

  95. F.-J. Ebert, An overview of performance characteristics, experiences and trends of aerospace engine bearings technologies. Chin. J. Aeronaut. 20, 378–384 (2007). https://doi.org/10.1016/S1000-9361(07)60058-2

    Article  Google Scholar 

  96. Ball bearing rod end. https://www.gyballscrew.com/rod-end-bearing/ball-bearing-rod-end.html, 2022. Accessed 26th Feb 2022

  97. Miniature bearings and instrument ball bearings. https://www.astbearings.com/miniature-instrument-series-stainless-steel.html, 2022. Accessed 26th Feb 2022

  98. Z. Zheng, S. Li, Y. Liu, G. He, H. Yang, T. Yang, Research on analysis method of dynamic friction torque of high-speed precision miniature bearings, in IOP Conference Series: Materials Science and Engineering, vol. 892 (2020). https://doi.org/10.1088/1757-899X/892/1/012115

  99. M. Forsthoffer, Thrust Bearings, Forsthoffer’s Component Condition Monitoring (2019), p 53–62. https://doi.org/10.1016/b978-0-12-809599-7.00005-1

  100. S. McCutchan, R.M. Barnsby, A physics-based heat transfer analysis for aerospace ball thrust bearings, in World Tribology Congress III, vol. 2 (2008)

  101. S. Gao, Y. Shang, Q. Gao, CFD-based investigation on effects of orifice length-diameter ratio for the design of hydrostatic thrust bearing, Appl. Sci. 11(3) (2021)

  102. D. Konopka, F. Pape, N. Heimes, et al., Functionality investigations of dry-lubricated molybdenum trioxide cylindrical roller thrust bearings, Coatings 12(5) (2022)

  103. F. Larizza, C.Q. Howard, S. Grainger, W. Wang, Detection and location of defects in rolling element bearing using acoustic emission, in 18th Australian International Aerospace Congress 24–28 February (2019)

  104. M. Ozen, M. McKenzie, Stress analysis of rolling element bearings using the finite element method. SAE Trans. 97(5), 444–452 (1988)

    Google Scholar 

  105. A. Nebylov, Aerospace sensors, sensors technology series. Momentum Press. (2012). https://doi.org/10.5643/9781606500613

    Article  Google Scholar 

  106. Journal bearings. https://www.waukbearing.com/en/products/fluid-film-bearings/journal-bearings.html, 2022. Accessed 27th Feb 2022

  107. All About Jewel Bearings - What You Need to Know. https://www.thomasnet.com/articles/machinery-tools-supplies/all-about-jewel-bearings-what-you-need-to-know/, 2022. Accessed 1st Mar 2022

  108. M.A. Barnett, A. Silver, Application of air bearings to high-speed turbomachinery. SAE. (1970). https://doi.org/10.4271/700720

    Article  Google Scholar 

  109. F. Al-Bender, Air Bearings Theory Design and Applications. (Wiley, New York, 2021)

    Book  Google Scholar 

  110. B. Spilman, MiTi claims air foil bearing breakthrough, Lubr. Eng. 59(2) (2003)

  111. K. Radil, S. Howard, B. Dykas, The Role of Radial Clearance on the Performance of Foil Air Bearings, NASA/TM-2002-211705 (2002). http://gitrs.grc.nasa.gov/GLTRS

  112. H. Bleuler, M. Cole, P. Keogh et al., Magnetic Bearings, Theory, Design, and Application to Rotating Machinery. (Springer, Berlin, 2009)

    Google Scholar 

  113. G. Levesque, N.K. Arakere, An investigation of partial cone cracks in silicon nitride balls. Structures. 45, 6301–6315 (2008)

    CAS  Google Scholar 

  114. G.A. Levesque, N.K. Arakere, Critical flaw size in silicon nitride ball bearings. Tribol. Trans. 53(4), 511–519 (2010). https://doi.org/10.1080/10402000903491291

    Article  CAS  Google Scholar 

  115. Updates for the SKF catalogue Rolling bearings 17000, Rolling bearings catalogue. https://www.skf.com/group/products/rolling-bearings/erratapages/rbc17000. Accessed 2nd Nov 2022

  116. L. Wang, R.W. Snidle, L. Gu, Rolling contact silicon nitride bearing technology: a review of recent research. Wear. 246, 159–173 (2000)

    Article  CAS  Google Scholar 

  117. C.-S. Lee, J.-W. Park, S.-Y. Lim, B.-S. Kang, A study on the life characteristics of lightweight bearings. J. Korean Soc. Ind. Converg. 24, 819–825 (2021)

    Article  Google Scholar 

  118. C. Della Corte, R.D. Noebe, M. K. Stanford, S.A. Padula, Resilient and corrosion-proof rolling element bearings made from superelastic, in Ni-Ti Alloys for Aerospace Mechanism Applications, Glenn Research Center, NASA/TM—2011-217105 (2011)

  119. S. Pattabhiraman, G. Levesque, N.H. Kim, N.K. Arakere, Uncertainty analysis for rolling contact fatigue failure probability of silicon nitride ball bearings. Int. J. Solids Struct. 47, 2543–2553 (2010). https://doi.org/10.1016/j.ijsolstr.2010.05.018

    Article  CAS  Google Scholar 

  120. R. Swiercz, D. Oniszczuk-Swiercz, Experimental investigation of surface layer properties of high thermal conductivity tool steel after electrical discharge machining, Metals, 7(12) (2017)

  121. K. Hirao, K. Watari, M.E. Brito, M. Toriyama, S. Kanzaki, High thermal conductivity in silicon nitride with anisotropic microstructure. J. Am. Ceram. Soc. 79(9), 2485–2488 (1996)

    Article  CAS  Google Scholar 

  122. W.D. Callister Jr., D.G. Rethwisch, Material Science and Engineering an Introduction, 8th edn. (Wiley, New York, 2010)

    Google Scholar 

  123. L. Wang, R.W. Snidle, Rolling contact silicon nitride bearing technology: a review of recent research, Wear, 246 (2000)

  124. C. Mishra, A.K. Samantaray, G. Chakraborty, Ball bearing defect models: a study of simulated and experimental fault signatures. J. Sound Vib. 400, 86–112 (2017). https://doi.org/10.1016/j.jsv.2017.04.010

    Article  Google Scholar 

  125. L. Jiangshan, C. Ming, Research and application of virtual simulation technology in the aerospace bearing design and manufacture, in MATEC Web of Conferences, vol. 151, no. 8 (2018). https://doi.org/10.1051/matecconf/201815104002

  126. T.I. Liu, J. Lee, P. Singh, G. Liu, Real-time recognition of ball bearing states for the enhancement of precision, quality, efficiency, safety, and automation of manufacturing. Int. J. Adv. Manuf. Technol. 71, 809–816 (2014). https://doi.org/10.1007/s00170-013-5497-5

    Article  Google Scholar 

  127. A. Vincent, R. Fougères, G. Lormand, G. Dudragne, D. Girodin, Endurance limit model for through hardened and surface hardened bearing steels, in bearing steel technology. ASTM STP. 1419, 459–473 (2002)

    Google Scholar 

  128. P.K. Pearson, M.M. Dezzani, Advanced Materials and Processes for Aerospace Transmission, vol 1 (Institution of Mechanical Engineers, London, 1993)

    Google Scholar 

  129. C.M. Tomasello, J.L. Maloney, Aerospace bearing and gear alloys. Adv. Mater. Processes. 154(1), 58–60 (1998)

    CAS  Google Scholar 

  130. S. Ooi, H.K.D.H. Bhadeshia, Duplex hardening of steels for aeroengine bearings. ISIJ Int. 52, 1927–1934 (2012). https://doi.org/10.2355/isijinternational.52.1927

    Article  CAS  Google Scholar 

  131. E. Streit, W. Trojahn, Duplex hardening for aerospace bearing steels, bearing steel technology, in ASTM STP 1419, ed. by J. M. Beswick (American Society for Testing and Materials, West Conshohocken, 2002), p 386–398

  132. E. Streit, J. Brock, P. Poulin, Performance evaluation of ‘duplex hardened’ bearings for advanced turbine engine applications, in ASTM Conference Reno (2005). https://doi.org/10.1520/JAI14049

  133. S. Marble, B.P. Morton, Predicting the Remaining Life of Propulsion System Bearing, IEEE, IEEE AC paper #1350, Version 1, 2006. ISBN: 0-7803-9546-8/06. https://doi.org/10.1109/AERO.2006.1656121

  134. https://www.machinedesign.com/mechanical-motion-systems/bearings/article/21832459/choosing-surface-finishes-for-plain-bearing-shafts. Accessed 20th Sept 2022

  135. T.A. Harris, Rolling Bearing Analysis. (Wiley, New York, 2001)

    Google Scholar 

  136. C. Jin, B. Wu, Heat generation modeling of ball bearing based on internal load distribution. Tribol. Int. 45(1), 8–15 (2012)

    Article  Google Scholar 

  137. C. Tarawneh, J.A. Turner, L.W. Koester, B.M. Wilson, Service life testing of railroad bearings with known subsurface inclusions: detected with advanced ultrasonic technology. Int. J. Railw. Technol. 2, 55–78 (2013). https://doi.org/10.4203/ijrt.2.3.3

    Article  Google Scholar 

  138. JSSG-2007A, Department of Defense Joint Service Specification Guide: Engines, Aircraft, Turbine. http://everyspec.com/USAF/USAF-General/JSSG-2007A_12946/, 2022. Accessed 29th July 2022

  139. W.L. Gamble, R. Valorit, Development of counter-rotating intershaft support bearing technology. J. Aircraft. DOI. 10(2514/3), 44908 (1983)

    Google Scholar 

  140. W. Gao, Z. Liu, D. Nelias, Analysis of counter-rotating roller bearing in different mounting configurations. ASME J. Eng. Gas Turb. Power. (2019). https://doi.org/10.1115/1.4043216

    Article  Google Scholar 

  141. E.V. Zaretsky, Bearing and Gear Steels for Aerospace Applications (NASA Technical Memorandum, 1990), p. 102529

  142. B.L. Averbach, E.N. Bamberger, Analysis of bearing incidents in aircraft gas turbine. Tribol. Trans. 34(2), 241–247 (2008). https://doi.org/10.1080/10402009108982032

    Article  Google Scholar 

  143. E.O. Doebelin, Measurement Systems—Application and Design, 5th edn. (Mc Graw Hill Education, New Delhi, 2008)

    Google Scholar 

  144. W.A. Glaeser, Materials for Tribology, Tribology Series, vol 20 (Elsevier, New York, 1992)

    Google Scholar 

  145. R.K. Mishra, S.K. Muduli, K. Srinivasan, S.I. Ahmed, Failure analysis of an inter-shaft bearing of an aero gas turbine engine. J Fail. Anal. Preven. (2015). https://doi.org/10.1007/s11668-015-9933-8

    Article  Google Scholar 

  146. H.-K. Lorosch, Effects of unfavourable environmental conditions on the service life of jet engine and helicopter bearings, in 60th AGARD Meeting, April 21–26, San Antonio, TX, Proceedings No. 394, Paper 12 (1985).

  147. F.-J. Ebert, P. Poulin, The effect of cleanliness on the attainable bearing life in aerospace applications. Tribol. Trans. 38, 851–856 (1995). https://doi.org/10.1080/10402009508983479

    Article  CAS  Google Scholar 

  148. S. Alhasia, S. Gindy, S. Arslan, B. Jawad, C. Riedel, Analysis of failure modes of bearing outer race rotation. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 8, 240–243 (2015). https://doi.org/10.4271/2015-01-0146

    Article  Google Scholar 

  149. J. Ma, Z. Li, L. Zhan, C. Li, G. Zhang, Research on non-contact aerospace bearing cage-speed monitoring based on weak magnetic detection. Mech. Syst. Signal Process. (2022). https://doi.org/10.1016/j.ymssp.2021.108785

    Article  Google Scholar 

  150. Bearing Storage Manual. https://www.bearing-news.com/bearing-storage-manual/, 2022. Accessed on 2nd Mar 2022

  151. Y. Zhang, B. Fang, L. Kong, Y. Li, Effect of the ring misalignment on the service characteristics of ball bearing and rotor system. Mech. Mach. Theory. (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103889

    Article  Google Scholar 

  152. https://www.ntn.co.jp/jimtof2004/eng/pdf/PrecisionBrgs-e/PrecisionBrgs-e-039.pdf.

  153. W. Chengbiao, Y. Xiang, W. Lijun, Y. Deyang, Investigation of failure mechanism and modification for film-lubricated precise angular -contact ball bearing, Vacuum, 77(2) (2005)

  154. DEF STAN 00-971, General specification for aircraft gas turbine engines (1987)

  155. R.A.E. Wood, Rolling bearing cages. Tribol. Int. 5(1), 14–21 (1972)

    Article  Google Scholar 

  156. Y.-F. Jinag, B. Shi, W.-X. Zhang, J. Chen, M. Li, and Q.-k. Li, Analysis of aero-engine inter-shaft bearing stiffness, in Advances in Applied Nonlinear Dynamics, Vibration and Control-2021 (2022). https://doi.org/10.1007/978-981-16-5912-6_38

  157. D. Koulocheris, A. Stathis, T. Costopoulos, D. Tsantiotis, Experimental study of the impact of grease particle contaminants on wear and fatigue life of ball bearings. Eng. Fail. Anal. 39, 164–180 (2014). https://doi.org/10.1016/j.engfailanal.2014.01.016

    Article  CAS  Google Scholar 

  158. Bearing Failure Analysis. https://www.astbearings.com/failure-analysis.html, 2022. Accessed on 4th Mar 2022

  159. F.C. Campbell, Fatigue and Fracture: Understanding the Basics (ASM International, 2012).

  160. Ball Bearing Fits & Tolerances. https://www.gmnbt.com/ball-bearing-guide/ball-bearing-fits-and-tolerances/, 2022. Accessed 3rd Mar 2022

  161. C.S. Sunnersjö, Rolling bearing vibrations—the effects of geometrical imperfections and wear. J. Sound Vib. 98, 455–474 (1985). https://doi.org/10.1016/0022-460X(85)90256-1

    Article  Google Scholar 

  162. Y. Wei, Z. Chen, W. Xu, Y. Jiao, Effect analysis of dimensional tolerances on the dynamic characteristics of hydrodynamic journal bearing system. Dyn. Vib. Control (American Society of Mechanical Engineers). 4B, 1–5 (2013). https://doi.org/10.1115/IMECE2013-62535

    Article  Google Scholar 

  163. ASME, Life Ratings for Modern Rolling Bearings, Trib -vol. 14 (ASME, New York, 2003)

  164. P.J.L. Fernandes, Contact fatigue in rolling-element bearings. Eng. Fail. Anal. 4, 155–160 (1997). https://doi.org/10.1016/S1350-6307(97)00007-1

    Article  Google Scholar 

  165. R.K. Upadhyay, L.A. Kumaraswamidhas, M.S. Azam, Rolling element bearing failure analysis: a case study, case studies in engineering failure. Analysis. 1, 15–17 (2013). https://doi.org/10.1016/j.csefa.2012.11.003

    Article  Google Scholar 

  166. P.K. Singh, U. Joshi, Fatigue life analysis of thrust ball bearing using ansys. Int. J. Eng. Sci. Res. Technol. 3(1), 156–162 (2014)

    Google Scholar 

  167. P. Göncz, R. Potofinik, S. Glodež, Load capacity of a three-row roller slewing bearing raceway. Procedia Eng. 10, 1196–1201 (2011). https://doi.org/10.1016/j.proeng.2011.04.199

    Article  Google Scholar 

  168. D. Nélias, C. Jacq, G. Lormand, G. Dudragne, A. Vincent, New methodology to evaluate the rolling contact fatigue performances of bearing steels with surface dents—application to 32CrMoV13 (Nitrided) and M50 steels. ASME J. Tribol. 127, 611–622 (2005). https://doi.org/10.1115/1.1924462

    Article  CAS  Google Scholar 

  169. W.T. Becker, R.J. Shipley, Failure Analysis and Prevention, vol 11 (ASM International, USA, 2002)

    Book  Google Scholar 

  170. O. Brinji, K. Fallahnezhad, P.A. Meehan, Analytical model for predicting false brinelling in bearings. Wear. (2020). https://doi.org/10.1016/j.wear.2019.203135

    Article  Google Scholar 

  171. F. Massi, J. Rocchi, A. Culla, Y. Berthier, Coupling system dynamics and contact behaviour: Modelling bearings subjected to environmental induced vibrations and ‘false brinelling’ degradation. Mech. Syst. Signal Process. 24(4), 1068–1080 (2010). https://doi.org/10.1016/j.ymssp.2009.09.004

    Article  Google Scholar 

  172. S. Gao, S. Chatterton, L. Naldi, P. Pennacchi, Ball bearing skidding and over-skidding in large-scale angular contact ball bearings: nonlinear dynamic model with thermal effects and experimental results. Mech. Syst. Signal Process. 147, 107120 (2021). https://doi.org/10.1016/j.ymssp.2020.107120

    Article  Google Scholar 

  173. Q. Han, X. Li, F. Chu, Skidding behavior of cylindrical roller bearings under time-variable load conditions. Int. J. Mech. Sci. (2018). https://doi.org/10.1016/j.ijmecsci.2017.11.013

    Article  Google Scholar 

  174. Q. Zhang, J. Luo, X.-Y. Xie, J. Xu, Z.-H. Ye, Experimental study on the skidding damage of a cylindrical roller bearing. Materials. 13, 4075 (2020). https://doi.org/10.3390/ma13184075

    Article  CAS  Google Scholar 

  175. R.J. Boness, Minimum load requirements for the prevention of skidding in high speed thrust loaded ball bearings. J. Lubr. Tech. 103, 35–39 (1981). https://doi.org/10.1115/1.3251611

    Article  Google Scholar 

  176. J.V. Poplawski, J.A. Mauriello, Skidding in Lightly Loaded, High Speed Ball Thrust Bearings, ASME Paper No. 69-Lubs-20 (1969).

  177. C.R. Gentle, R.J. Boness, Prediction of ball motion in high speed thrust loaded ball bearings. ASME J. Lubr. Tech. 98, 463–469 (1976). https://doi.org/10.1115/1.3452889

    Article  Google Scholar 

  178. J.A. Mauriello, N. Lagasse, A.R. Jones, W. Murray, Rolling Element Bearing Retainer Analysis, USAAHRDL Tech. Report No. 72-45 (1973)

  179. A.R. Jones, The Mathematical Theory of Rolling Element Bearings, Section 13, ed. H. A. Rothart Mechanical Design and Systems Handbook (McGraw-Hill, 1964).

  180. P.S. Kliman, High speed ball bearings—limitations and thrust requirements, in ASLE, 18th ASLE Annual Meeting, New York (1963)

  181. T. Xu, G. Xu, Q. Zhang, C. Hua, H. Tan, S. Zhang, A. Luo, A preload analytical method for ball bearings utilising bearing skidding criterion. Tribol. Int. 67, 44–50 (2013). https://doi.org/10.1016/j.triboint.2013.06.017

    Article  Google Scholar 

  182. A. Dadouche, R. Kerrouche, Roller bearing skidding for aero-engine applications: all-steel versus hybrid bearings. J. Eng. Gas Turb. Power. (2023). https://doi.org/10.1115/1.4055510

    Article  Google Scholar 

  183. S.K. John, R.K. Mishra, K. Hari, H.P. Ramesha, K.K. Ram, Investigation of bearing failure in a turbo shaft engine. J Fail. Anal. Prev. (2020). https://doi.org/10.1007/s11668-020-00812-1

    Article  Google Scholar 

  184. H. Hanachi, C. Mechefske, J. Liu, A. Banerjee, Y. Chen, Performance-based gas turbine health monitoring, diagnostics, and prognostics: a survey. IEEE Trans. Reliab. 67(3), 1340–1363 (2018). https://doi.org/10.1109/TR.2018.2822702

    Article  Google Scholar 

  185. S.H. Ghafari, E.M. Abdel-Rahman, F. Golnaraghi, F. Ismail, Vibrations of balanced fault-free ball bearings. J. Sound Vib. 329, 1332–1347 (2010). https://doi.org/10.1016/j.jsv.2009.11.003

    Article  Google Scholar 

  186. H. Jiang, Y. Xia, X. Wang, Rolling bearing fault detection using an adaptive lifting multiwavelet packet with a 1 1/2 dimension spectrum. Meas. Sci. Technol. 24, 125002 (2013). https://doi.org/10.1088/0957-0233/24/12/125002

    Article  CAS  Google Scholar 

  187. J. Donelson III., R.L. Dicus, Bearing defect detection using onboard accelerometer measurement. ASME/IEEE Joint Railr. Conf. 23(25), 95–102 (2002). https://doi.org/10.1109/RRCON.2002.1000100

    Article  Google Scholar 

  188. P.D. McFadden, J.D. Smith, The vibration produced by multiple point defects in a rolling element bearing. J. Sound Vib. 98, 263–273 (1985). https://doi.org/10.1016/0022-460X(85)90390-6

    Article  Google Scholar 

  189. T.-I. Liu, F. Ordukhani, D. Jani, Monitoring and diagnosis of roller bearing conditions using neural networks and soft computing. Int. J. Knowl. Based Intell. Eng.Syst. 9, 1–9 (2005). https://doi.org/10.5555/1233853.1233862

    Article  Google Scholar 

  190. H. Zhang, X. Chen, X. Zhang, B. Ye, X. Wang, Aero-engine bearing fault detection: a clustering low-rank approach. Mech. Syst. Signal Process. 138, 106529 (2020). https://doi.org/10.1016/j.ymssp.2019.106529

    Article  Google Scholar 

  191. H. Zhang, X. Chen, X. Zhang, A clustering low-rank approach for aero-enging bearing fault detection, in 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (2019). https://doi.org/10.1109/I2MTC.2019.8826891

  192. C. Mishra, A.K. Samantaray, G. Chakraborty, Bond graph modeling and experimental verification of a novel scheme for fault diagnosis of rolling element bearings in special operating conditions. J. Sound Vib. 377, 302–330 (2016). https://doi.org/10.1016/j.jsv.2016.05.021

    Article  Google Scholar 

  193. Y. Ming, J. Chen, G.M. Dong, Weak fault feature extraction of rolling bearing based on cyclic Wiener filter and envelope spectrum. Mech. Syst. Signal Process. 25, 1773–1785 (2011). https://doi.org/10.1016/j.ymssp.2010.12.002

    Article  Google Scholar 

  194. R. Dubey, R.R. Sharma, A. Upadhyay, R.B. Pachori, Automated variational non-linear chirp mode decomposition for bearing fault diagnosis. IEEE Trans. Ind. Inform. 1–9 (2023). https://doi.org/10.1109/TII.2022.3229829

  195. C. Mishra, A.K. Samantaray, G. Chakraborty, Rolling element bearing fault diagnosis under slow speed operation using wavelet de-noising. Measurement. 103, 77–86 (2017). https://doi.org/10.1016/j.measurement.2017.02.033

    Article  Google Scholar 

  196. C. Mishra, A.K. Samantaray, G. Chakraborty, Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate. Mech. Syst. Signal. Process. 72–73, 206–222 (2016). https://doi.org/10.1016/j.ymssp.2015.10.019

    Article  Google Scholar 

  197. B.T. Holm-Hansen, R.X. Gao, L. Zhang, Customized wavelet for bearing defect detection. J. Dyn. Syst. Meas. Control. 126, 740–745 (2004). https://doi.org/10.1115/1.1850534

    Article  Google Scholar 

  198. R. Rubini, U. Meneghetti, Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mech. Syst. Signal Process. 15, 287–302 (2001). https://doi.org/10.1016/j.ymssp.2012.12.013

    Article  Google Scholar 

  199. W. Cioch, O. Knapik, J. Leskow, Finding a frequency signature for a cyclostationary signal with applications to wheel bearing diagnostics. Mech Syst. Signal. Process. 38, 55–64 (2013). https://doi.org/10.1016/j.ymssp.2012.12.013

    Article  Google Scholar 

  200. G. Chen, T.F. Hao, H.F. Wang, B. Zhao, J. Wang, X.Y. Cheng, Sensitivity analysis and experimental research on ball bearing early fault diagnosis based on testing signal from casing. J. Dyn. Syst. Meas. Contr. (2014). https://doi.org/10.1115/1.4027926

    Article  Google Scholar 

  201. R.R. Bhat, V. Nandi, V. Manohara, S.V. Suresh, Case study on failure of ball bearing of an aeroengine. J. Fail. Anal. Prev. 11, 631–635 (2011). https://doi.org/10.1007/s11668-011-9509-1

    Article  Google Scholar 

  202. H. Zhang, X. Chen, W. Chen, Z. Shen, Collaborative sparse classification for aero-engine’s gear hub crack diagnosis. Mech. Syst. Signal Process. (2019). https://doi.org/10.1016/j.ymssp.2019.106426

    Article  Google Scholar 

  203. Z. Zhao, S. Wu, B. Qiao, S. Wang, X. Chen, Enhanced sparse period-group lasso for bearing fault diagnosis. IEEE Trans. Ind. Electron. 66, 2143–2153 (2019). https://doi.org/10.1109/TIE.2018.2838070

    Article  Google Scholar 

  204. S. Zhang, S. Lu, Q. He, F. Kong, Time-varying singular value decomposition for periodic transient identification in bearing fault diagnosis. J. Sound Vib. 379, 213–231 (2016). https://doi.org/10.1016/j.jsv.2016.05.035

    Article  Google Scholar 

  205. H. Li, T. Liu, X. Wu, Q. Chen, Research on bearing fault feature extraction based on singular value decomposition and optimized frequency band entropy. Mech. Syst. Signal Pr. 118, 477–502 (2019). https://doi.org/10.1016/j.ymssp.2018.08.056

    Article  Google Scholar 

  206. D. Zhang, M. Entezami, E. Stewart, C. Roberts, D. Yu, Adaptive fault feature extraction from wayside acoustic signals from train bearings. J. Sound Vib. 425, 221–238 (2018). https://doi.org/10.1016/j.jsv.2018.04.004

    Article  Google Scholar 

  207. M.H. Zhao, B.P. Tang, Q. Tan, Fault diagnosis of rolling element bearing based on S transform and gray level co-occurrence matrix. Meas. Sci. Technol. (2015). https://doi.org/10.1088/0957-0233/26/8/085008

    Article  Google Scholar 

  208. Z. Chen, Y. Zi, P. Li, J. Chen, K. Xu, An energy time-convexity second-order synchrosqueezing transform and application in weak fault diagnosis of rolling bearings in aerospace engine. Meas. Sci. Technol. (2020). https://doi.org/10.1088/1361-6501/ab983f

    Article  Google Scholar 

  209. G. Yu, A concentrated time-frequency analysis tool for bearing fault diagnosis. IEEE Trans. Instrum. Meas. 69, 371–381 (2020). https://doi.org/10.1109/TIM.2019.2901514

    Article  Google Scholar 

  210. P.E. William, M.W. Hoffman, Identification of bearing faults using time domain zero-crossings. Mech. Syst. Signal Process. 25, 3078–3088 (2011). https://doi.org/10.1016/j.ymssp.2011.06.001

    Article  Google Scholar 

  211. P. Borghesani, R. Ricci, S. Chatterton, P. Pennacch, A new procedure for using envelope analysis for rolling element bearing diagnostics in variable operating conditions. Mech. Syst. Signal Process. 38, 23–35 (2013). https://doi.org/10.1016/j.ymssp.2012.09.014

    Article  Google Scholar 

  212. J. Li, B. Yang, L. Liang, Diagnosis method for single fault of aerospace bearings, in Second International Conference on Mechanic Automation and Control Engineering (IEEE, 2011).

  213. M. Barakat, M. EI Badaoui, F. Guillet, Hard competitive growing neural network for the diagnosis of small bearing faults. Mech. Syst. Signal Process. 37, 276–292 (2013). https://doi.org/10.1016/j.ymssp.2012.11.002

    Article  Google Scholar 

  214. X. Jian, W. Li, X. Guo, R. Wang, Fault diagnosis of motor bearings based on a one-dimensional fusion neural network. Sensors. 19, 122 (2019). https://doi.org/10.3390/s19010122

    Article  Google Scholar 

  215. B. Li, M.Y. Chow, Y. Tipsuwa, J.C. Hung, Neural-networkbased motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 47, 1060–1069 (2000). https://doi.org/10.1109/41.873214

    Article  Google Scholar 

  216. S. Li, G. Liu, X. Tang, J. Lu, J. Hu, An ensemble deep convolutional neural network model with improved d-s evidence fusion for bearing fault diagnosis. Sensors (Basel). (2017). https://doi.org/10.3390/s17081729

    Article  Google Scholar 

  217. H. Zhang, X. Chen, Z. Du, X. Li, R. Yan, Nonlocal sparse model with adaptive structural clustering for feature extraction of aero-engine bearings. J. Sound Vib. 368, 223–248 (2016). https://doi.org/10.1016/j.jsv.2016.01.017

    Article  Google Scholar 

  218. H. Cheng, Y. Zhang, W. Lu, Z. Yang, A bearing fault diagnosis method based on VMD-SVD and fuzzy clustering. Int. J. Pattern Recogn. Artif. Intell. (2019). https://doi.org/10.1142/S0218001419500186

    Article  Google Scholar 

  219. X. Lou, K.A. Loparo, Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mech. Syst. Signal Process. 18, 1077–1095 (2004). https://doi.org/10.1016/S0888-3270(03)00077-3

    Article  Google Scholar 

  220. T.I. Liu, J.H. Singonahalli, N.R. Iyer, Detection of roller bearing defects using expert system and fuzzy logic. Mech. Syst. Signal Process. 10, 595–614 (1996). https://doi.org/10.1006/mssp.1996.0041

    Article  Google Scholar 

  221. D. Scholz, Jet Engines—Bearings, Seals and Oil Consumption, HAW Hamburg Memo, 2018. http://reports-at-aero.ProfScholz.de.

  222. L.S. Law, J.H. Kim, W.Y.H. Liew, S.K. Lee, An approach based on wavelet packet decomposition and Hilbert–Huang transform for spindle bearings condition monitoring. Mech. Syst. Signal Process. 33, 197–211 (2012). https://doi.org/10.1016/j.ymssp.2012.06.004

    Article  Google Scholar 

  223. T. Lin, G. Chen, W. Ouyang, Q. Zhang, H. Wang, L. Chen, Hyper-spherical distance discrimination: a novel data description method for aero-engine rolling bearing fault detection. Mech. Syst. Signal Pr. 109, 330–351 (2018). https://doi.org/10.1016/j.ymssp.2018.01.009

    Article  Google Scholar 

  224. G. Yu, T. Lin, Z. Wang, Y. Li, Time-reassigned multisynchrosqueezing transform for bearing fault diagnosis of rotating machinery. IEEE Trans Ind. Electron. 68, 1486–1496 (2021). https://doi.org/10.1109/TIE.2020.2970571

    Article  Google Scholar 

  225. SKF life testing. https://www.skf.com/in/products/rolling-bearings/principles-of-rolling-bearing-selection/bearing-selection-process/bearing-size/skf-life-testing, 2022. Accessed 3rd Mar 2022

  226. P.K. Gupta, Analytical modelling of rolling bearings, Encycl. Tribol. (2013)

  227. P.K. Gupta, Advanced Dynamics of Rolling Elements. (Springer, New York, 1984) https://doi.org/10.1115/1.3171847

    Book  Google Scholar 

  228. N. Wang, D. Jiang, H. Xu, Dynamic characteristics analysis of a dual-rotor system with inter-shaft bearing. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. (2017). https://doi.org/10.1177/0954410017748969

    Article  Google Scholar 

  229. A. Klausen, R.W. FolgerÃ, K.G. Robbersmyr, H.R. Karimi, Accelerated bearing life-time test rig development for low-speed data acquisition. Model. Identif. Control (MIC). 38, 143–156 (2017). https://doi.org/10.4173/mic.2017.3.4

    Article  Google Scholar 

  230. D. Toth, A. Szilagyi, G. Takacs, Lifetime analysis of rolling element bearings. Des. Mach. Struct. 4(1), 105–115 (2014)

    Google Scholar 

  231. R. Maurer, R.A. Pallini, Development of New Materials for Turbopump Bearings, NASA. Marshall Space Flight Center Advan. High Pressure (1985)

  232. R.X. Gao, S. Sheng, Nondestructive testing for bearing condition monitoring and health diagnosis, in Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization (2007), p 439–470. https://doi.org/10.1142/9789812770943_0019.

  233. Bearings quality inspection with resonance testing. https://www.modalshop.com/ndt/ndt-applications/industries/bearings-quality-inspection, 2022. Accessed 3rd March 2022

  234. R. Huang, L. Xi, X. Li, C.R. Liu, H. Qiu, J. Lee, Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods. Mech. Syst. Signal Process. 21, 193–207 (2007). https://doi.org/10.1016/j.ymssp.2005.11.008

    Article  Google Scholar 

  235. C. Chen, B. Li, J. Guo, Z. Liu, B. Qi, C. Hua, Bearing life prediction methodbased on the improved FIDES reliability model. Reliab. Eng. Syst. Saf. 227, 108746 (2022). https://doi.org/10.1016/j.ress.2022.108746

    Article  Google Scholar 

  236. B10 Life. https://www.isixsigma.com/dictionary/b10-life/, 2022. Accessed 6th March 2022

  237. J. Banks, J.S. Carson II., B.L. Nelson, D.M. Nicol, Discrete-Event System Simulation, 4th edn. (Prentice-Hall of India Private Limited, New Delhi, 2005)

    Google Scholar 

  238. B. Villa-Covarrubias, M.R. Piña-Monarrez, J.M. Barraza-Contreras, M. Baro-Tijerina, Stress-based weibull method to select a ball bearing and determine its ACTUAL RELIABility. Appl. Sci. (2020). https://doi.org/10.3390/app10228100

    Article  Google Scholar 

  239. Design Failure Mode and Effect Analysis (DFMEA). https://www.isixsigma.com/dictionary/design-failure-mode-and-effect-analysis-dfmea/, 2022. Accessed 6th Mar 2022

  240. Root Cause Analysis. https://www.isixsigma.com/dictionary/root-cause-analysis/, 2022. Accessed 6th Mar 2022

  241. E.V. Zaretsky, Rolling Bearing Life Prediction, Theory, and Application, NASA/TP—2013–215305, Glenn Research Center, Cleveland, Ohio (2013).

Download references

Acknowledgments

The authors would like to acknowledge Dr. Oddelu Ojella, Associate Professor, Department of Applied Mathematics, Defence Institute of Advanced Technology, Pune, India, for his valuable suggestions. The authors would like to thank N.M.R. Venkat Rao Rayaprolu, M.Tech. Student, Department of Aerospace Engineering, Defence Institute of Advanced Technology, Pune, India, for his valued help. The authors would also like to acknowledge Dr. Rishi Raj Sharma, Assistant Professor, Department of Electronics Engineering, Defence Institute of Advanced Technology, Pune, India, for his valuable inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RK Satapathy.

Ethics declarations

Conflict of interest

The authors hereby declare that there are no potential conflicts of interest regarding any financial support, research, authorship, and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Satapathy, R. Bearings in Aerospace, Application, Distress, and Life: A Review. J Fail. Anal. and Preven. 23, 915–947 (2023). https://doi.org/10.1007/s11668-023-01658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-023-01658-z

Keywords

Navigation