[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

State Estimation Using Non-uniform and Delayed Information: A Review

  • Review
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The study and application of methods for incorporating nonuniform and delayed information in state estimation techniques are important topics to advance in soft sensor development.Therefore, this paper presents a review of these methods and proposes a taxonomy that allows a faster selection of state estimator in this type of applications. The classification is performed according to the type of estimator, method, and used tool. Finally, using the proposed taxonomy, some applications reported in the literature are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. B. L. Walcott, M. J. Corless, S. H. Zak. Comparative study of non-linear state-observation techniques. International Journal of Control, vol. 45, no. 6, pp. 2109–2132, 1987. DOI: 10.1080/00207178708933870.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Dochain. State and parameter estimation in chemical and biochemical processes: A tutorial. Journal of Process Control, vol. 13, no. 8, pp. 801–818, 2003. DOI: 10.1016/S0959-1524(03)00026-X.

    Article  MathSciNet  Google Scholar 

  3. [3]B. Bequette. Behavior of a CSTR with a recirculating jacket heat transfer system. In Proceedings of the American Control Conference, IEEE, Anchorage, USA, vol. 4, pp. 3275–3280, 2002.

    Google Scholar 

  4. J. Mohd Ali, N. Ha Hoang, M. A. Hussain, D. Dochain. Review and classification of recent observers applied in chemical process systems. Computers & Chemical Engineering, vol. 76, pp. 27–41, 2015. DOI: 10.1016/j.compchemeng.2015.01.019.

    Article  Google Scholar 

  5. H. H. Afshari, S. A. Gadsden, S. Habibi. Gaussian filters for parameter and state estimation: A general review of theory and recent trends. Signal Processing, vol. 135, pp. 218–238, 2017. DOI: 10.1016/j.sigpro.2017.01.001.

    Article  Google Scholar 

  6. S. L. Sun, H. L. Lin, J. Ma, X. Y. Li. Multi-sensor distributed fusion estimation with applications in networked systems: A review paper. Information Fusion, vol. 38, pp. 122–134, 2017. DOI: 10.1016/j.inffus.2017.03.006.

    Article  Google Scholar 

  7. A. Gopalakrishnan, N. S. Kaisare, S. Narasimhan. Incorporating delayed and infrequent measurements in extended Kalman filter based nonlinear state estimation. Journal of Process Control, vol. 21, no. 1, pp. 119–129, 2011. DOI: 10.1016/j.jprocont.2010.10.013.

    Article  Google Scholar 

  8. Y. F. Guo, B. Huang. State estimation incorporating infrequent, delayed and integral measurements. Automatica, vol. 58, pp. 32–38, 2015. DOI: 10.1016/j.automatica. 2015.05.001.

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. F. Guo, Y. Zhao, B. Huang. Development of soft sensor by incorporating the delayed infrequent and irregular measurements. Journal of Process Control, vol. 24, no. 11, pp. 1733–1739, 2014. DOI: 10.1016/j.jprocont.2014. 09.006.

    Article  Google Scholar 

  10. S. C. Patwardhan, S. Narasimhan, P. Jagadeesan, B. Gopaluni, S. L. Shah. Nonlinear Bayesian state estimation: A review of recent developments. Control Engineering Practice, vol. 20, no. 10, pp. 933–953, 2012. DOI: 10.1016/j. conengprac.2012.04.003.

    Article  Google Scholar 

  11. I. Peñarrocha, R. Sanchis, J. A. Romero. State estimator for multisensor systems with irregular sampling and time-varying delays. International Journal of Systems Science, vol. 43, no. 8, pp. 1441–1453, 2012. DOI: 10.1080/00207721. 2011.625482.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Wang, X H Huang, M. Wang. Survey of sequence measurement filtering algorithm. Control and Decision, vol. 27, no. 1, pp. 1–7, 2012. (in Chinese)

    MathSciNet  Google Scholar 

  13. H. P. Wang, Y. Tian, C. Vasseur. Piecewise continuous hybrid systems based observer design for linear systems with variable sampling periods and delay output. Signal Processing, vol. 114, pp. 75–84, 2015. DOI: 10.1016/j.sigpro. 2015.01.009.

    Article  Google Scholar 

  14. A. Khosravian, J. Trumpf, R. Mahony, T. Hamel. Recursive attitude estimation in the presence of multi-rate and multi-delay vector measurements. In Proceedings of the American Control Conference, IEEE, Chicago, USA, pp. 3199–3205, 2015.

    Google Scholar 

  15. A. Khosravian, J. Trumpf, R. Mahony. State estimation for nonlinear systems with delayed output measurements. In Proceedings of the 54th Annual Conference on Decision and Control, IEEE, Osaka, Japan, pp. 6330–6335, 2015.

    Google Scholar 

  16. J. Zeng, J. F. Liu. Distributed moving horizon state estimation: Simultaneously handling communication delays and data losses. Systems & Control Letters, vol. 75, pp. 56–68, 2015. DOI: 10.1016/j.sysconle.2014.11.007.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Tatiraju, M. Soroush, B. A. Ogunnaike. Multirate non-linear state estimation with application to a polymerization reactor. AIChE Journal, vol. 45, no. 4, pp. 769–780, 1998.

    Article  Google Scholar 

  18. N. Kazantzis, R. A. Wright. Nonlinear observer design in the presence of delayed output measurements. Systems & Control Letters, vol. 54, no. 9, pp. 877–886, 2005. DOI: 10.1016/j.sysconle.2004.12.005.

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. L. Dong, W. J. Liu, S. K. Zuo. Observer design for nonlinear systems with interval time-varying delay. WSEAS Transactions on Systems and Control, vol. 9, pp. 614–622, 2014.

    Google Scholar 

  20. Q. P. Ha, N. D. That, P. T. Nam, H. Trinh. Partial state estimation for linear systems with output and input time delays. ISA Transactions, vol. 53, no. 2, pp. 327–334, 2014. DOI: 10.1016/j.isatra.2013.12.025.

    Article  Google Scholar 

  21. J. A. Isaza, J. E. Rendón, J. P. Viana, H. A. Botero. Non-linear state estimation for batch process with delayed measurements. In Proceedings of XVII Latin American Conference in Automatic Control, pp. 95–100, 2016.

    Google Scholar 

  22. J. A. Isaza, J. D. Sánchez, E. Jiénez-Rodríguez, H. A. Botero. A soft sensor for biomass in a batch process with delayed measurements. In Proceedings of XVII Latin American Conference in Automatic Control, pp. 334–339, 2016.

    Google Scholar 

  23. L. Q. Zhao, J. L. Wang, T. Yu, K. Y. Chen, T. J. Liu. Nonlinear state estimation for fermentation process using cubature Kalman filter to incorporate delayed measurements. Chinese Journal of Chemical Engineering, vol. 23, no. 11, pp. 1801–1810, 2015. DOI: 10.1016/j.cjche.2015. 09.005.

    Article  Google Scholar 

  24. D. Nada, M. Bousbia-Salah, M. Bettayeb. Multi-sensor data fusion for wheelchair position estimation with unscented Kalman Filter. International Journal of Automation and Computing, Oline First. DOI: 10.1007/s11633-017-1065-z.

  25. H. L. Alexander. State estimation for distributed systems with sensing delay. In Proceedings of the SPIE Conference on Data Structures and Target Classification, SPIE, Orlando, USA, pp. 103–111, 1991.

    Chapter  Google Scholar 

  26. T. D. Larsen, N. A. Andersen, O. Ravn, N. K. Poulsen. Incorporation of time delayed measurements in a discrete-time kalman filter. In Proceedings of the 37th IEEE Conference on Decision and Control, IEEE, Tampa, USA, vol. 4, pp. 3972–3977, 1998.

    Google Scholar 

  27. B. D. O. Anderson, J. B. Moore. Optimal Filtering (Dover Books on Electrical Engineering), New York, USA: Dover Publications, 2012.

    MATH  Google Scholar 

  28. D. Simon. Optimal State Estimation, Hoboken, USA: John Wiley & Sons, Inc., 2006.

    Book  Google Scholar 

  29. G. L. Zhao, J. C. Wang. Reset observers for linear time-varying delay systems: Delay-dependent approach. Journal of the Franklin Institute, vol. 351, no. 11, pp. 5133–5147, 2014. DOI: 10.1016/j.jfranklin.2014.08.011.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Khosravian, J. Trumpf, R. Mahony, T. Hamel. State estimation for invariant systems on lie groups with delayed output measurements. Automatica, vol. 68, pp. 254–265, 2015. DOI: 10.1016/j.automatica.2016.01.024.

    Article  MathSciNet  MATH  Google Scholar 

  31. Z. Hidayat, R. Babuska, B. De Schutter, A. Núñez. Observers for linear distributed-parameter systems: A survey. In Proceedings of IEEE International Symposium on Robotic and Sensors Environments, IEEE, Montreal, USA, pp. 166–171, 2011.

    Google Scholar 

  32. J. Zhang, J. F. Liu. Observer enhanced distributed moving horizon state estimation subject to communication delays. Journal of Process Control, vol. 24, no. 5, pp. 672–686, 2014. DOI: 10.1016/j.jprocont.2014.03.012.

  33. W. Y. Leong, H. Trinh, T. Fernando.Design of distributed functional observers for interconnected time-delay systems. In Proceedings of the 8th IEEE International Conference on Industrial and Information Systems, IEEE, Peradeniya, Sri Lanka, pp. 191–196, 2013.

    Google Scholar 

  34. V. Prasad, M. Schley, L. P. Russo, B. Wayne Bequette. Product property and production rate control of styrene polymerization. Journal of Process Control, vol. 12, no. 3, pp. 353–372, 2002. DOI: 10.1016/S0959-1524(01)00044-0.

    Article  Google Scholar 

  35. [35] R. van der Merwe, E. Wan. Sigma-point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models, Technical Report, OHSU Digital Commons, Oregon Health &Science University, USA, 2004.

    Google Scholar 

  36. O. J. M. Smith. A controller to overcome dead time. ISA Journal, vol. 6, no. 2, pp. 28–33, 1959.

    Google Scholar 

  37. K. R. Krishnan, I. M. Horowitz. Synthesis of a non-linear feedback system with significant plant-ignorance for prescribed system tolerances. International Journal of Control, vol. 19, no. 4, pp. 689–706, 1974. DOI: 10.1080/ 00207177408932666.

    Article  MATH  Google Scholar 

  38. K. V. Ling, K. W. Lim. Receding horizon recursive state estimation. IEEE Transactions on Automatic Control, vol. 44, no. 9, pp. 1750–1753, 1999. DOI: 10.1109/9.788546.

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Comparison of adaptive kalman filter methods in state estimation of a nonlinear system using asynchronous measurements. In Proceedings of World Congress on Engineering and Computer Science, San Francisco, USA, vol. 2, pp. 20–22, 2009.

    Google Scholar 

  40. R. López-Negrete, L. T. Biegler. A moving horizon estimator for processes with multi-rate measurements: A non-linear programming sensitivity approach. Journal of Process Control, vol. 22, no. 4, pp. 677–688, 2012. DOI: 10.1016/ j.jprocont.2012.01.013.

    Article  Google Scholar 

  41. M. S. Mahmoud, M. F. Emzir. State estimation with asynchronous multi-rate multi-smart sensors. Information Sciences, vol. 196, pp. 15–27, 2012. DOI: 10.1016/j.ins. 2012.01.034.

    Article  Google Scholar 

  42. L. P. Yan, B. Xiao, Y. Q. Xia, M. Y. Fu. State estimation for asynchronous multirate multisensor nonlinear dynamic systems with missing measurements. International Journal of Adaptive Control and Signal Processing, vol. 26, no. 6, pp. 516–529, 2012. DOI: 10.1002/acs.2266.

    Article  MathSciNet  MATH  Google Scholar 

  43. L. P. Yan, D. H. Zhou, M. Y. Fu, Y. Q. Xia. State estimation for asynchronous multirate multisensor dynamic systems with missing measurements. IET Signal Processing, vol. 4, no. 6, pp. 728–739, 2010. DOI: 10.1049/iet-spr.2009. 0215.

    Article  MathSciNet  Google Scholar 

  44. L. Ji, J. B. Rawlings. Application of MHE to large-scale nonlinear processes with delayed lab measurements. Computers & Chemical Engineering, vol. 80, pp. 63–72, 2015. DOI: 10.1016/j.compchemeng.2015.04.015.

    Article  Google Scholar 

  45. Y. Wu, X. L. Luo. A novel calibration approach of soft sensor based on multirate data fusion technology. Journal of Process Control, vol. 20, no. 10, pp. 1252–1260, 2010. DOI: 10.1016/j.jprocont.2010.09.003.

    Article  Google Scholar 

  46. M. Moayedi, Y. K. Foo, Y. C. Soh. Filtering for networked control systems with single/multiple measurement packets subject to multiple-step measurement delays and multiple packet dropouts. International Journal of Systems Science, vol. 42, no. 3, pp. 335–348, 2011. DOI: 10.1080/00207720903513335.

    Article  MathSciNet  MATH  Google Scholar 

  47. F. Cacace, F. Conte, A. Germani. Filtering continuous-time linear systems with time-varying measurement delay. IEEE Transactions on Automatic Control, vol. 60, no. 5, pp. 1368–1373, 2015. DOI: 10.1109/TAC.2014. 2357138.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. L. Juloski, W. P. M. H. Heemels, Y. Boers, F. Verschure. Two approaches to state estimation for a class of piecewise affine systems. In Proceedings of the 42nd IEEE Conference on Decision and Control, IEEE, Maui, USA, vol. 1, pp. 143–148, 2003.

    Google Scholar 

  49. A. Germani, C. Manes, P. Pepe. A new approach to state observation of nonlinear systems with delayed output. IEEE Transactions on Automatic Control, vol. 47, no. 1, pp. 96–101, 2002. DOI: 10.1109/9.981726.

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Lee. Observer for discrete-time Lipschitz non-linear systems with delayed output. IET Control Theory & Applications, vol. 5, no. 1, pp. 54–62, 2011. DOI: 10.1049/iet-cta.2009.0400.

    Article  MathSciNet  Google Scholar 

  51. F. Cacace, A. Germani, C. Manes. A chain observer for nonlinear systems with multiple time-varying measurement delays. SIAM Journal on Control and Optimization, vol. 52, no. 3, pp. 1862–1885, 2014. DOI: 10.1137/ 120876472.

    Article  MathSciNet  MATH  Google Scholar 

  52. D. M. de la Pena, P. D. Christofides. Lyapunov-based model predictive control of nonlinear systems subject to data losses. IEEE Transactions on Automatic Control, vol. 53, no. 9, pp. 2076–2089, 2008. DOI: 10.1109/TAC.2008.929401.

    Article  MathSciNet  MATH  Google Scholar 

  53. S. X. Jing, T. H. Pan, Z. M. Li. Recursive Bayesian algorithm for identification of systems with non-uniformly sampled input data. International Journal of Automation and Computing, Online First. DOI: 10.1007/s11633-017-1073-z.

  54. P. Niamsup, V. N. Phat. Robust finite-time H control of linear time-varying delay systems with bounded control via Riccati equations. International Journal of Automation and Computing, Online First. DOI: 10.1007/s11633-016-1018-y.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhon A. Isaza.

Additional information

This work was supported by funding from Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS).

Recommended by Guest Editor Zhi-Jie Xu

Jhon A. Isaza received the B. Sc. degree in instrumentation and control engineering from the Politécnico Colombiano Jaime Isaza Cadavid, Colombia in 2008.In 2012, he received the M. Sc. degree in engineering with an emphasis on industrial automation from the Universidad Nacional de Colombia, and he is currently a Ph. D. degree candidate in the same university.

His research interests include estimation and control theory, automation and instrumentation of industrial processes.

Hector A. Botero received the B. Sc. degree in electrical engineering from Universidad de Antioquia, Colombia, and received the M. Sc. degree in engineering from Universidad del Valle, Colombia. Finally, he received the Ph.D. degree from Universidad Nacional de Colombia, Colombia. He is currently with the Department of Electrical Energy and Automatics, Universidad Nacional de Colombia, Colombia.

His research interests include state estimation, identification of generation control systems, and education in engineering.

Hernan Alvarez received the B. Sc. degree in chemical engineer from Universidad Nacional de Colombia, Colombia. In 1995, he received the M. Sc. degree in system engineering at the Universidad Nacional de Colombia. In 2000, he received the Ph.D. degree in control systems engineering at Automatic Control Institute of the National University of San Juan, Argentina. Currently, he is a full professor at the Universidad Nacional de Colombia, performing both research activities and teaching in the undergraduate and graduate programs at the Processes and Energy School, Faculty of Mines.

His research interests include chemical process modelling and control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaza, J.A., Botero, H.A. & Alvarez, H. State Estimation Using Non-uniform and Delayed Information: A Review. Int. J. Autom. Comput. 15, 125–141 (2018). https://doi.org/10.1007/s11633-017-1106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-017-1106-7

Keywords

Navigation