Abstract
This work incorporates topological features via persistence diagrams to classify point cloud data arising from materials science. Persistence diagrams are multisets summarizing the connectedness and holes of given data. A new distance on the space of persistence diagrams generates relevant input features for a classification algorithm for materials science data. This distance measures the similarity of persistence diagrams using the cost of matching points and a regularization term corresponding to cardinality differences between diagrams. Establishing stability properties of this distance provides theoretical justification for the use of the distance in comparisons of such diagrams. The classification scheme succeeds in determining the crystal structure of materials on noisy and sparse data retrieved from synthetic atom probe tomography experiments.
Similar content being viewed by others
References
Adams H, Emerson T, Kirby M, Neville R, Peterson C, Shipman P, Chepushtanova S, Hanson E, Motta F, Ziegelmeier L (2017) Persistence images: a stable vector representation of persistent homology. J Mach Learn Res 18(1):218–252
Breusch TS, Pagan AR (1979) A simple test for heteroscedasticity and random coefficient variation. Econ J Econ Soc 47(5):1287–1294
Bubenik P (2015) Statistical topological data analysis using persistence landscapes. J Mach Learn Res 16(1):77–102
Carlsson G, Zomorodian A, Collins A, Guibas LJ (2005) Persistence barcodes for shapes. Int J Shape Model 11(02):149–187
Carriere M, Cuturi M, Oudot S (2017) Sliced Wasserstein kernel for persistence diagrams. In: Proceedings of the 34th international conference on machine learning-volume 70, JMLR. org, pp 664–673
Chazal F, Cohen-Steiner D, Mérigot Q (2011) Geometric inference for probability measures. Found Comput Math 11(6):733–751
Chazal F, de Silva V, Oudot S (2014) Persistence stability for geometric complexes. Geom Dedic 173(1):193–214
Chisholm JA, Motherwell S (2004) A new algorithm for performing three-dimensional searches of the cambridge structural database. J Appl Crystallogr 37(2):331–334
Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discrete Comput Geom 37(1):103–120
Cohen-Steiner D, Edelsbrunner H, Harer J, Mileyko Y (2010) Lipschitz functions have \({L}_p\)-stable persistence. Found Comput Math 10(2):127–139
Edelsbrunner H, Harer J (2010) Computational topology: an introduction. American Mathematical Society, Providence
Edelsbrunner H, Letscher D, Zomorodian A (2000) Topological persistence and simplification. In: Proceedings 41st annual symposium on foundations of computer science, 2000, IEEE, pp 454–463
Efron B, Hastie T (2016) Computer age statistical inference, vol 5. Cambridge University Press, Cambridge
Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A et al (2014) Confidence sets for persistence diagrams. Ann Stat 42(6):2301–2339
Gault B, Moody MP, De Geuser F, La Fontaine A, Stephenson LT, Haley D, Ringer SP (2010) Spatial resolution in atom probe tomography. Microsc Microanal 16(1):99–110
Gault B, Moody MP, Cairney JM, Ringer SP (2012) Atom probe crystallography. Materials Today 15(9):378–386
Goff M (2011) Extremal Betti numbers of Vietoris–Rips complexes. Discrete Comput Geom 46(1):132–155
Hicks D, Oses C, Gossett E, Gomez G, Taylor RH, Toher C, Mehl MJ, Levy O, Curtarolo S (2018) Aflow-sym: platform for the complete, automatic and self-consistent symmetry analysis of crystals. Acta Crystallogr Sect A Found Adv 74(3):184–203
Honeycutt JD, Andersen HC (1987) Molecular dynamics study of melting and freezing of small lennard-jones clusters. J Phys Chem 91(19):4950–4963
Katsoulakis MA, Zabaras N (2017) Special issue: predictive multiscale materials modeling. J Comput Phys 338(1):18–20
Kelly TF, Miller MK, Rajan K, Ringer SP (2013) Atomic-scale tomography: a 2020 vision. Microsc Microanal 19(3):652–664
Larsen PM, Schmidt S, Schiøtz J (2016) Robust structural identification via polyhedral template matching. Modell Simul Mater Sci Eng 24(5):055007
Larson DJ (2013) Local electrode atom probe tomography: a user’s guide. Springer, Berlin
Marchese A, Maroulas V (2016) Topological learning for acoustic signal identification. In: 2016 19th International conference on information fusion (FUSION), IEEE, pp 1377–1381
Marchese A, Maroulas V (2018) Signal classification with a point process distance on the space of persistence diagrams. Adv Data Anal Classif 12(3):657–682
Marchese A, Maroulas V, Mike J (2017) K-means clustering on the space of persistence diagrams. In: Wavelets and sparsity XVII, International Society for Optics and Photonics, vol 10394, p 103940W
Maroulas V, Mike JL, Oballe C (2019) Nonparametric estimation of probability density functions of random persistence diagrams. J Mach Learn Res 20(151):1–49
Maroulas V, Nasrin F, Oballe C (2019) A bayesian framework for persistent homology. SIAM J Math Data Sci Appear. arXiv:1901.02034
McNutt NW, Rios O, Maroulas V, Keffer DJ (2017) Interfacial Li-ion localization in hierarchical carbon anodes. Carbon 111:828–834
Miller MK (2014) Atom-probe tomography: the local electrode atom probe. Springer, Berlin
Miller MK, Kelly TF, Rajan K, Ringer SP (2012) The future of atom probe tomography. Mater Today 15(4):158–165
Moody MP, Gault B, Stephenson LT, Marceau RK, Powles RC, Ceguerra AV, Breen AJ, Ringer SP (2011) Lattice rectification in atom probe tomography: toward true three-dimensional atomic microscopy. Microsc Microanal 17(2):226–239
Pfender F, Ziegler GM (2004) Kissing numbers, sphere packings, and some unexpected proofs. Not Am Math Soc 51:873–883
Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP (2015) Entropy-stabilized oxides. Nat Commun 6:8485
Santodonato LJ, Zhang Y, Feygenson M, Parish CM, Gao MC, Weber RJ, Neuefeind JC, Tang Z, Liaw PK (2015) Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun 6:5964
Spannaus A, Maroulas V, Keffer DJ, Law KJH (2019) Bayesian point set registration. In: 2017 MATRIX Annals, Springer, pp 99–120
Togo A, Tanaka I (2018) Spglib : a software library for crystal symmetry search. arXiv:1808.01590
Wasserman L (2018) Topological data analysis. Annu Rev Stat Appl 5:501–532
Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93
Ziletti A, Kumar D, Scheffler M, Ghiringhelli LM (2018) Insightful classification of crystal structures using deep learning. Nat Commun 9(1):2775
Zomorodian A, Carlsson G (2005) Computing persistent homology. Discrete Comput Geom 33(2):249–274
Acknowledgements
The authors would like to thank the anonymous associate editor and two anonymous reviewers for their insightful comments which substantially improved the manuscript. Moreover, the authors would like to thank Professor David J. Keffer (Department of Materials Science and Engineering at The University of Tennessee) for providing the codes which create the realistic APT datasets and for useful discussions, as well as Professor Kody J.H. Law (School of Mathematics at the University of Manchester) for insightful discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work has been partially supported by the ARO Grant # W911NF-17-1-0313, the NSF DMS-1821241, and UTK 2019 Research Seed Funding-Interdisciplinary.
Rights and permissions
About this article
Cite this article
Maroulas, V., Micucci, C.P. & Spannaus, A. A stable cardinality distance for topological classification. Adv Data Anal Classif 14, 611–628 (2020). https://doi.org/10.1007/s11634-019-00378-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11634-019-00378-3