[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Kendall correlation coefficient between functional data

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Measuring dependence is a very important tool to analyze pairs of functional data. The coefficients currently available to quantify association between two sets of curves show a non robust behavior under the presence of outliers. We propose a new robust numerical measure of association for bivariate functional data. We extend in this paper Kendall coefficient for finite dimensional observations to the functional setting. We also study its statistical properties. An extensive simulation study shows the good behavior of this new measure for different types of functional data. Moreover, we apply it to establish association for real data, including microarrays time series in genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Borovskikh Y (1996) U-statistics in Banach space. VSP BV, Oud-Beijerland

    MATH  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (1999) Functional linear model. Stat Probab Lett 45:11–22

    Article  MathSciNet  Google Scholar 

  • Cuevas A, Febrero M, Fraiman R (2004) An ANOVA test for functional data. Comput Stat Data Anal 47:111–122

    Article  MathSciNet  Google Scholar 

  • Delicado P (2007) Functional k-sample problem when data are density functions. Comput Stat 22:391–410

    Article  MathSciNet  Google Scholar 

  • Dubin JA, Müller HG (2005) Dynamical correlation for multivariate longitudinal data. J Am Stat Assoc 100:872–881

    Article  MathSciNet  Google Scholar 

  • Efron B (2004) Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. J Am Stat Assoc 99:96–104

    Article  MathSciNet  Google Scholar 

  • Efron B (2005) Local false discovery rates. Technical report, Department of Statistics, Stanford University

  • Escabias M, Aguilera A, Valderrama M (2004) Principal components estimation of functional logistic regression: discussion of two different approaches. J Non Parametr Stat 16(3–4):365–384

    Article  MathSciNet  Google Scholar 

  • Febrero M, Galeano P, González-Manteiga W (2008) Outlier detection in functional data by depth measures, with application to identify abnormal \(NO_x\) levels. Envirometrics 19:331–345

    Article  Google Scholar 

  • He G, Müller HG, Wang JL (2000) Extending correlation and regression from multivariate to functional data. In: Puri ML (ed) Asymptotics in statistics and probability. VSP, Leiden, pp 197–210

    Chapter  Google Scholar 

  • Kendall M (1938) A new measure of rank correlation. Biometrika Trust 30(1/2):81–93

    Article  Google Scholar 

  • Leurgans SE, Moyeed RA, Silverman BW (1993) Canonical correlation analysis when data are curves. J R Stat Soc B 55:725–740

    MathSciNet  MATH  Google Scholar 

  • López-Pintado S, Romo J (2007) Depth-based inference for functional data. Comput Stat Data Anal 51:4957–4968

    Article  MathSciNet  Google Scholar 

  • López-Pintado S, Romo J (2009) On the concept of depth for functional data. J Am Stat Assoc 104:718–734

    Article  MathSciNet  Google Scholar 

  • Opgen-Rhein R, Strimmer K (2006) Inferring gene dependency networks from genomic longitudinal data: a functional data approach. REVSTAT 4(1):53–65

    MathSciNet  MATH  Google Scholar 

  • Pezulli S, Silverman B (1993) Some properties of smoothed components analysis for functional data. Comput Stat 8:1–16

    MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Rangel C, Angus J, Ghahramani Z et al (2004) Modelling T-cell activation using gene expression profiling and state-space models. Bioinformatics 20:1361–1372

    Article  Google Scholar 

  • Scarsini M (1984) On measure of concordance. Stochastica 8(3):201–218

    MathSciNet  MATH  Google Scholar 

  • Schwabik S, Guoju Y (2005) Topics in Banach space integration. World Scientific Publishing, Singapore

    Book  Google Scholar 

  • Taylor MD (2007) Multivariate measures of concordance. Ann Inst Stat Math 59:789–806

    Article  MathSciNet  Google Scholar 

  • Taylor MD (2008) Some properties of multivariate measures of concordance. arXiv:0808.3105 [math.PR]

  • Whittaker J (1990) Graphical models in applied multivariate statistics. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Valencia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia, D., Lillo, R.E. & Romo, J. A Kendall correlation coefficient between functional data. Adv Data Anal Classif 13, 1083–1103 (2019). https://doi.org/10.1007/s11634-019-00360-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-019-00360-z

Keywords

Mathematics Subject Classification

Navigation