Abstract
Metabolic and overload disorders are a heterogeneous group of relatively uncommon but important diseases. While imaging plays a key role in the early detection and accurate diagnosis in specific organs with a pivotal role in several metabolic pathways, most of these diseases affect different tissues as part of a systemic syndromes. Moreover, since the symptoms are often vague and phenotypes similar, imaging alterations can present as incidental findings, which must be recognized and interpreted in the light of further biochemical and histological investigations. Among imaging modalities, MRI allows, thanks to its multiparametric properties, to obtain numerous information on tissue composition, but many metabolic and accumulation alterations require a multimodal evaluation, possibly using advanced imaging techniques and sequences, not only for the detection but also for accurate characterization and quantification. The purpose of this review is to describe the different alterations resulting from metabolic and overload pathologies in organs and tissues throughout the body, with particular reference to imaging findings.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ferreira CR, Martinelli D, Blau N. Clinical and biochemical footprints of inherited metabolic diseases VI. Metabolic dermatoses. Mol Genet Metab. 2021;134(1–2):87–95.
Lagergren K, Wahlin K, Mattsson F, Alderson D, Lagergren J. Haemochromatosis and gastrointestinal cancer. Int J Cancer. 2016;139(8):1740–3.
Ferreira CR, Gahl WA. Lysosomal storage diseases. Transl Sci Rare Dis. 2017;2(1–2):1–71.
Messina C, Albano D, Gitto S, Tofanelli L, Bazzocchi A, Ulivieri FM, et al. Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quant Imaging Med Surg. 2020;10(8):1687–98.
Albano D, Messina C, Vitale J, Sconfienza LM. Imaging of sarcopenia: old evidence and new insights. Eur Radiol. 2020;30(4):2199–208.
Adams JE. Advances in bone imaging for osteoporosis. Nat Rev Endocrinol. 2013;9(1):28–42.
Queiroz-Andrade M, Blasbalg R, Ortega CD, Rodstein MA, Baroni RH, Rocha MS, et al. MR imaging findings of iron overload. Radiographics. 2009;29(6):1575–89.
Chung MJ, Lee KS, Franquet T, Muller NL, Han J, Kwon OJ. Metabolic lung disease: imaging and histopathologic findings. Eur J Radiol. 2005;54(2):233–45.
de Oliveira AM, Paulino MV, Vieira APF, McKinney AM, da Rocha AJ, Dos Santos GT, et al. Imaging patterns of toxic and metabolic brain disorders. Radiographics. 2019;39(6):1672–95.
Bordonaro V, Ciancarella P, Ciliberti P, Curione D, Napolitano C, Santangelo TP, et al. Dynamic contrast-enhanced magnetic resonance lymphangiography in pediatric patients with central lymphatic system disorders. Radiol Med. 2021;126(5):737–43.
Jafari SH, Haseli S, Kaffashan S, Saeedi-Moghadam M, Iranpour P, Zeinali-Rafsanjani B. Assessment of the Hallmarks of Wilson disease in CT scan imaging. J Med Imaging Radiat Sci. 2020;51(1):145–53.
Amin K, Mileto A, Kolokythas O. MRI for liver iron quantification: concepts and current methods. Semin Ultrasound CT MR. 2022;43(4):364–70.
Hamer OW, Aguirre DA, Casola G, Lavine JE, Woenckhaus M, Sirlin CB. Fatty liver: imaging patterns and pitfalls. Radiographics. 2006;26(6):1637–53.
Glass RB, Astrin KH, Norton KI, Parsons R, Eng CM, Banikazemi M, et al. Fabry disease: renal sonographic and magnetic resonance imaging findings in affected males and carrier females with the classic and cardiac variant phenotypes. J Comput Assist Tomogr. 2004;28(2):158–68.
Renapurkar RD, Kanne JP. Metabolic and storage lung diseases: spectrum of imaging appearances. Insights Imaging. 2013. https://doi.org/10.1007/s13244-013-0289-x.
Rovira A, Alonso J, Cordoba J. MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol. 2008;29(9):1612–21.
Paoletti M, Muzic SI, Marchetti F, Farina LM, Bastianello S, Pichiecchio A. Differential imaging of atypical demyelinating lesions of the central nervous system. Radiologia Medica. 2021;126(6):827–42.
Santos Andrade C, Tavares Lucato L, Da Martin MGM, Marques-Dias MJ, Portela LAP, Gattas GS, et al. Non-alcoholic Wernicke’s encephalopathy: broadening the clinicoradiological spectrum. Br J Radiol. 2010;83(989):437–46.
Kim TE, Lee EJ, Young JB, Shin DJ, Kim JH. Wernicke encephalopathy and ethanol-related syndromes. Semin Ultrasound CT MR. 2014;35(2):85–96.
Kim DM, Lee IH, Song CJ. Uremic encephalopathy: MR imaging findings and clinical correlation. AJNR Am J Neuroradiol. 2016;37(9):1604–9.
Kumar G, Goyal MK. Lentiform Fork sign: a unique MRI picture. Is metabolic acidosis responsible? Clin Neurol Neurosurg. 2010;112(9):805–12.
Bathla G, Policeni B, Agarwal A. Neuroimaging in patients with abnormal blood glucose levels. AJNR Am J Neuroradiol. 2014;35(5):833–40.
Kowkabi S, Nemati R, Mohammadi M, Kaboodkhani R, Omrani A, Ghavipisheh M. Temporal subcortical T2 hypointensity on MRI in Epilepsia partialis continua, a non ketotic hyperglycemia rather than herpes encephalitis. Int J Neurosci. 2020. https://doi.org/10.1080/00207454.2020.1847104.
Shoback DM, Bilezikian JP, Costa AG, Dempster D, Dralle H, Khan AA, et al. Presentation of hypoparathyroidism: etiologies and clinical features. J Clin Endocrinol Metab. 2016;101(6):2300–12.
Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulation. Handb Clin Neurol. 2018;147:293–305.
Choi JW, Moon WJ. Gadolinium deposition in the brain: current updates. Korean J Radiol. 2019;20(1):134–47.
Sharma P, Eesa M, Scott JN. Toxic and acquired metabolic encephalopathies: MRI appearance. AJR Am J Roentgenol. 2009;193(3):879–86.
Uk-I JM, Yu E, Bartlett E, Soobrah R, Kucharczyk W. Acute hyperammonemic encephalopathy in adults: imaging findings. AJNR Am J Neuroradiol. 2011;32(2):413–8.
Albano D, Benenati M, Bruno A, Bruno F, Calandri M, Caruso D, et al. Imaging side effects and complications of chemotherapy and radiation therapy: a pictorial review from head to toe. Insights Imaging. 2021;12(1):76.
McKinney AM, Kieffer SA, Paylor RT, SantaCruz KS, Kendi A, Lucato L. Acute toxic leukoencephalopathy: potential for reversibility clinically and on MRI with diffusion-weighted and FLAIR imaging. AJR Am J Roentgenol. 2009;193(1):192–206.
Sahu A, Sankhe S, Mittal K, Kamath N, Pg N, Sahu A. A pictorial review on reversible splenial lesions. Indian J Radiol Imaging. 2021;31(1):3–9.
Bhatia S, Kapoor AK, Sharma A, Gupta R, Kataria S. Cerebral encephalopathy with extrapontine myelinolysis in a case of postpartum hypernatremia. Indian J Radiol Imaging. 2014;24(1):57–60.
Martin RJ. Central pontine and extrapontine myelinolysis: the osmotic demyelination syndromes. J Neurol Neurosurg Psychiatry. 2004. https://doi.org/10.1136/jnnp.2004.04590.
Saroja AO, Naik KR, Mali RV, Kunam SR. “Wine Glass” sign in recurrent postpartum hypernatremic osmotic cerebral demyelination. Ann Indian Acad Neurol. 2013;16(1):106–10.
Kumar A, Singh AK. Teaching neuroimage: inverted V sign in subacute combined degeneration of spinal cord. Neurology. 2009;72(1): e4.
Ravina B, Loevner LA, Bank W. MR findings in subacute combined degeneration of the spinal cord: a case of reversible cervical myelopathy. AJR Am J Roentgenol. 2000;174(3):863–5.
Turna O, Turna IF. Quantitative assessment of cervical spinal cord by diffusion tensor tractography in 3.0.T. Radiologia Medica. 2021;126(1):83–8.
Jung JB, Kim Y, Oh K, Kim SA, Doh JH, Oh HJ, et al. Subacute combined degeneration associated with vitamin E deficiency due to small bowel obstruction: a case report. Medicine (Baltimore). 2019;98(36): e17052.
Galea N, Polizzi G, Gatti M, Cundari G, Figuera M, Faletti R. Cardiovascular magnetic resonance (CMR) in restrictive cardiomyopathies. Radiologia Medica. 2020;125(11):1072–86.
Di Cesare E, Carerj S, Palmisano A, Carerj ML, Catapano F, Vignale D, et al. Multimodality imaging in chronic heart failure. Radiologia Medica. 2021;126(2):231–42.
Pierpaolo P, Rolf S, Manuel BP, Davide C, Dresselaers T, Claus P, et al. Left ventricular global myocardial strain assessment: are CMR feature-tracking algorithms useful in the clinical setting? Radiol Med. 2020;125(5):444–50.
Esposito A, Francone M, Andreini D, Buffa V, Cademartiri F, Carbone I, et al. SIRM-SIC appropriateness criteria for the use of Cardiac Computed Tomography. Part 1: Congenital heart diseases, primary prevention, risk assessment before surgery, suspected CAD in symptomatic patients, plaque and epicardial adipose tissue characterization, and functional assessment of stenosis. Radiologia Medica. 2021;126(9):1236–48.
Esposito A, Gallone G, Palmisano A, Marchitelli L, Catapano F, Francone M. The current landscape of imaging recommendations in cardiovascular clinical guidelines: toward an imaging-guided precision medicine. Radiologia Medica. 2020;125(11):1013–23.
Pontone G, Di Cesare E, Castelletti S, De Cobelli F, De Lazzari M, Esposito A, et al. Appropriate use criteria for cardiovascular magnetic resonance imaging (CMR): SIC-SIRM position paper part 1 (ischemic and congenital heart diseases, cardio-oncology, cardiac masses and heart transplant). Radiologia Medica. 2021;126(3):365–79.
Pradella S, Grazzini G, De Amicis C, Letteriello M, Acquafresca M, Miele V. Cardiac magnetic resonance in hypertrophic and dilated cardiomyopathies. Radiologia Medica. 2020;125(11):1056–71.
Buffa V, Di Renzi P. CMR in the diagnosis of ischemic heart disease. Radiologia Medica. 2020;125(11):1114–23.
Liguori C, Farina D, Vaccher F, Ferrandino G, Bellini D, Carbone I. Myocarditis: imaging up to date. Radiol Med. 2020;125(11):1124–34.
van Assen M, Muscogiuri G, Caruso D, Lee SJ, Laghi A, De Cecco CN. Artificial intelligence in cardiac radiology. Radiol Med. 2020;125(11):1186–99.
Russo V, Lovato L, Ligabue G. Cardiac MRI: technical basis. Radiol Med. 2020;125(11):1040–55.
Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016;18(1):89.
Pierpaolo P, Rolf S, Manuel B-P, Davide C, Dresselaers T, Claus P, et al. Left ventricular global myocardial strain assessment: are CMR feature-tracking algorithms useful in the clinical setting? Radiologia Medica. 2020;125(5):444–50.
Palumbo P, Masedu F, De Cataldo C, Cannizzaro E, Bruno F, Pradella S, et al. Real-world clinical validity of cardiac magnetic resonance tissue tracking in primitive hypertrophic cardiomyopathy. Radiologia Medica. 2021;126(12):1532–43.
Maurer MS, Elliott P, Comenzo R, Semigran M, Rapezzi C. Addressing common questions encountered in the diagnosis and management of cardiac amyloidosis. Circulation. 2017;135(14):1357–77.
Benson MD, Buxbaum JN, Eisenberg DS, Merlini G, Saraiva MJM, Sekijima Y, et al. Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid. 2018;25(4):215–9.
Benson MD, Buxbaum JN, Eisenberg DS, Merlini G, Saraiva MJM, Sekijima Y, et al. Amyloid nomenclature 2020: update and recommendations by the international society of amyloidosis (ISA) nomenclature committee. Amyloid. 2020;27(4):217–22.
Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS. Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(22):2872–91.
Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–12.
Sipe JD, Benson MD, Buxbaum JN, Ikeda SI, Merlini G, Saraiva MJ, et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification international society of amyloidosis 2016 nomenclature guidelines. Amyloid. 2016;23(4):209–13.
Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for multimodality imaging in cardiac amyloidosis: part 1 of 2-evidence base and standardized methods of imaging. J Card Fail. 2019;25(11):e1–39.
Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 2 of 2-diagnostic criteria and appropriate utilization. J Card Fail. 2019;25(11):854–65.
Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 1 of 2-evidence base and standardized methods of imaging. J Nucl Cardiol. 2019;26(6):2065–123.
Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 2 of 2-diagnostic criteria and appropriate utilization. J Nucl Cardiol. 2020;27(2):659–73.
Paeng JC, Choi JY. Nuclear imaging for cardiac amyloidosis: bone scan, SPECT/CT, and amyloid-targeting PET. Nucl Med Mol Imaging. 2021;55(2):61–70.
Garcia-Pavia P, Rapezzi C, Adler Y, Arad M, Basso C, Brucato A, et al. Diagnosis and treatment of cardiac amyloidosis. A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur J Heart Fail. 2021;23(4):512–26.
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the management of heart failure: executive summary: a report of the American College Of Cardiology/American Heart Association Joint Committee on clinical Practice Guidelines. J Am Coll Cardiol. 2022;79(17):1757–80.
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022;79(17):e263–421.
Russo V, Lovato L, Ligabue G. Cardiac MRI: technical basis. Radiologia Medica. 2020;125(11):1040–55.
Palmisano A, Darvizeh F, Cundari G, Rovere G, Ferrandino G, Nicoletti V, et al. Advanced cardiac imaging in athlete’s heart: unravelling the grey zone between physiologic adaptation and pathology. Radiologia Medica. 2021;126(12):1518–31.
Martinez-Naharro A, Kotecha T, Norrington K, Boldrini M, Rezk T, Quarta C, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2019;12(5):810–9.
Treibel TA, Kozor R, Menacho K, Castelletti S, Bulluck H, Rosmini S, et al. Left ventricular hypertrophy revisited: cell and matrix expansion have disease-specific relationships. Circulation. 2017;136(25):2519–21.
Zhao L, Tian Z, Fang Q. Diagnostic accuracy of cardiovascular magnetic resonance for patients with suspected cardiac amyloidosis: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2016;16:129.
Kotecha T, Martinez-Naharro A, Treibel TA, Francis R, Nordin S, Abdel-Gadir A, et al. Myocardial edema and prognosis in amyloidosis. J Am Coll Cardiol. 2018;71(25):2919–31.
Monserrat L, Gimeno-Blanes JR, Marin F, Hermida-Prieto M, Garcia-Honrubia A, Perez I, et al. Prevalence of Fabry disease in a cohort of 508 unrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2007;50(25):2399–403.
Branton MH, Schiffmann R, Sabnis SG, Murray GJ, Quirk JM, Altarescu G, et al. Natural history of Fabry renal disease: influence of alpha-galactosidase a activity and genetic mutations on clinical course. Medicine (Baltimore). 2002;81(2):122–38.
Germain DP. A new phenotype of Fabry disease with intermediate severity between the classical form and the cardiac variant. Contrib Nephrol. 2001;136:234–40.
Germain DP. Fabry disease: recent advances in enzyme replacement therapy. Expert Opin Investig Drugs. 2002;11(10):1467–76.
Germain DP. General aspects of X-linked diseases. In: Mehta AG, editor. Fabry Disease: Perspectives from 5 years of FOS. Oxford; 2006.
Germain DP. Fabry disease: the need to stratify patient populations to better understand the outcome of enzyme replacement therapy. Clin Ther. 2007. https://doi.org/10.1016/s0149-2918(07)80122-6.
Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30.
Germain DP, Arad M, Burlina A, Elliott PM, Falissard B, Feldt-Rasmussen U, et al. The effect of enzyme replacement therapy on clinical outcomes in female patients with Fabry disease-a systematic literature review by a European panel of experts. Mol Genet Metab. 2019;126(3):224–35.
Germain DP, Benistan K, Angelova L. X-linked inheritance and its implication in the diagnosis and management of female patients in Fabry disease. Rev Med Interne. 2010;31(Suppl 2):S209–13.
Germain DP, Bruneval P, Tran TC, Balouet P, Richalet B, Benistan K. Uneventful pregnancy outcome after enzyme replacement therapy with agalsidase beta in a heterozygous female with Fabry disease: a case report. Eur J Med Genet. 2010;53(2):111–2.
Germain DP, Charrow J, Desnick RJ, Guffon N, Kempf J, Lachmann RH, et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet. 2015;52(5):353–8.
Germain DP, Elliott PM, Falissard B, Fomin VV, Hilz MJ, Jovanovic A, et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: a systematic literature review by a European panel of experts. Mol Genet Metab Rep. 2019;19: 100454.
Germain DP, Fouilhoux A, Decramer S, Tardieu M, Pillet P, Fila M, et al. Consensus recommendations for diagnosis, management and treatment of Fabry disease in paediatric patients. Clin Genet. 2019;96(2):107–17.
Germain DP, Giugliani R, Hughes DA, Mehta A, Nicholls K, Barisoni L, et al. Safety and pharmacodynamic effects of a pharmacological chaperone on alpha-galactosidase a activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies. Orphanet J Rare Dis. 2012;7:91.
Germain DP, Levade T, Hachulla E, Knebelmann B, Lacombe D, Seguin VL, et al. Challenging the traditional approach for interpreting genetic variants: lessons from Fabry disease. Clin Genet. 2022;101(4):390–402.
Germain DP, Moiseev S, Suarez-Obando F, Al Ismaili F, Al Khawaja H, Altarescu G, et al. The benefits and challenges of family genetic testing in rare genetic diseases-lessons from Fabry disease. Mol Genet Genomic Med. 2021;9(5):e1666.
Germain DP, Weidemann F, Abiose A, Patel MR, Cizmarik M, Cole JA, et al. Analysis of left ventricular mass in untreated men and in men treated with agalsidase-beta: data from the Fabry registry. Genet Med. 2013;15(12):958–65.
Tower-Rader A, Jaber WA. Multimodality imaging assessment of Fabry disease. Circ Cardiovasc Imaging. 2019;12(11):e009013.
Wu JC, Ho CY, Skali H, Abichandani R, Wilcox WR, Banikazemi M, et al. Cardiovascular manifestations of Fabry disease: relationships between left ventricular hypertrophy, disease severity, and alpha-galactosidase a activity. Eur Heart J. 2010;31(9):1088–97.
Hsu TR, Hung SC, Chang FP, Yu WC, Sung SH, Hsu CL, et al. Later Onset fabry disease, cardiac damage progress in silence: experience with a highly prevalent mutation. J Am Coll Cardiol. 2016;68(23):2554–63.
Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the society for cardiovascular magnetic resonance (SCMR) endorsed by the European association for cardiovascular imaging (EACVI). J Cardiovasc Magn Reson. 2017;19(1):75.
Nordin S, Kozor R, Vijapurapu R, Augusto JB, Knott KD, Captur G, et al. Myocardial Storage, Inflammation, and cardiac phenotype in Fabry disease after one year of enzyme replacement therapy. Circ Cardiovasc Imaging. 2019;12(12):e009430.
Nordin S, Kozor R, Medina-Menacho K, Abdel-Gadir A, Baig S, Sado DM, et al. Proposed stages of myocardial phenotype development in fabry disease. JACC Cardiovasc Imaging. 2019;12(8 Pt 2):1673–83.
Nordin S, Kozor R, Bulluck H, Castelletti S, Rosmini S, Abdel-Gadir A, et al. Cardiac Fabry disease with late gadolinium enhancement is a chronic inflammatory cardiomyopathy. J Am Coll Cardiol. 2016;68(15):1707–8.
Nordin S, Kozor R, Baig S, Abdel-Gadir A, Medina-Menacho K, Rosmini S, et al. Cardiac phenotype of prehypertrophic Fabry disease. Circ Cardiovasc Imaging. 2018;11(6):e007168.
Niemann M, Herrmann S, Hu K, Breunig F, Strotmann J, Beer M, et al. Differences in Fabry cardiomyopathy between female and male patients: consequences for diagnostic assessment. JACC Cardiovasc Imaging. 2011;4(6):592–601.
Weidemann F, Beer M, Kralewski M, Siwy J, Kampmann C. Early detection of organ involvement in Fabry disease by biomarker assessment in conjunction with LGE cardiac MRI: results from the SOPHIA study. Mol Genet Metab. 2019;126(2):169–82.
Kramer J, Niemann M, Stork S, Frantz S, Beer M, Ertl G, et al. Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease. Am J Cardiol. 2014;114(6):895–900.
Hagege A, Reant P, Habib G, Damy T, Barone-Rochette G, Soulat G, et al. Fabry disease in cardiology practice: literature review and expert point of view. Arch Cardiovasc Dis. 2019;112(4):278–87.
Markatis E, Afthinos A, Antonakis E, Papanikolaou IC. Cardiac sarcoidosis: diagnosis and management. Rev Cardiovasc Med. 2020;21(3):321–38.
Trivieri MG, Spagnolo P, Birnie D, Liu P, Drake W, Kovacic JC, et al. Challenges in cardiac and pulmonary sarcoidosis: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;76(16):1878–901.
Tadic M, Cuspidi C, Saeed S, Milojevic B, Milojevic IG. The role of cardiac magnetic resonance in diagnosis of cardiac sarcoidosis. Heart Fail Rev. 2021;26(3):653–60.
Kouranos V, Sharma R. Cardiac sarcoidosis: state-of-the-art review. Heart. 2021;107(19):1591–9.
Chareonthaitawee P, Beanlands RS, Chen W, Dorbala S, Miller EJ, Murthy VL, et al. Joint SNMMI-ASNC expert consensus document on the role of (18)F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol. 2017;24(5):1741–58.
Okada DR, Saad E, Wand AL, Griffin JM, Kasper EK, Chen EH, et al. Effect of corticosteroid dose and duration on 18-fluorodeoxyglucose positron emission tomography in cardiac sarcoidosis. JACC Cardiovasc Imaging. 2020;13(5):1280–2.
Ning N, Guo HH, Iagaru A, Mittra E, Fowler M, Witteles R. Serial cardiac FDG-PET for the diagnosis and therapeutic guidance of patients with cardiac sarcoidosis. J Card Fail. 2019;25(4):307–11.
Aitken M, Chan MV, Urzua Fresno C, Farrell A, Islam N, McInnes MDF, et al. Diagnostic accuracy of cardiac MRI versus FDG PET for cardiac sarcoidosis: a systematic review and meta-analysis. Radiology. 2022. https://doi.org/10.1148/radiol.21317.
Amano Y, Tachi M, Tani H, Mizuno K, Kobayashi Y, Kumita S. T2-weighted cardiac magnetic resonance imaging of edema in myocardial diseases. ScientificWorldJournal. 2012;2012:194069.
Liguori C, Farina D, Vaccher F, Ferrandino G, Bellini D, Carbone I. Myocarditis: imaging up to date. Radiologia Medica. 2020;125(11):1124–34.
Palumbo P, Cannizzaro E, Di Cesare A, Bruno F, Schicchi N, Giovagnoni A, et al. Cardiac magnetic resonance in arrhythmogenic cardiomyopathies. Radiologia Medica. 2020;125(11):1087–101.
Bravo PE, Raghu G, Rosenthal DG, Elman S, Petek BJ, Soine LA, et al. Risk assessment of patients with clinical manifestations of cardiac sarcoidosis with positron emission tomography and magnetic resonance imaging. Int J Cardiol. 2017;241:457–62.
Puntmann VO, Isted A, Hinojar R, Foote L, Carr-White G, Nagel E. T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis. Radiology. 2017;285(1):63–72.
Pradella S, Grazzini G, Brandani M, Calistri L, Nardi C, Mori F, et al. Cardiac magnetic resonance in patients with mitral valve prolapse: focus on late gadolinium enhancement and T1 mapping. Eur Radiol. 2019;29(3):1546–54.
Greulich S, Deluigi CC, Gloekler S, Wahl A, Zurn C, Kramer U, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013;6(4):501–11.
Crouser ED, Ono C, Tran T, He X, Raman SV. Improved detection of cardiac sarcoidosis using magnetic resonance with myocardial T2 mapping. Am J Respir Crit Care Med. 2014;189(1):109–12.
Crouser ED, Ruden E, Julian MW, Raman SV. Resolution of abnormal cardiac MRI T2 signal following immune suppression for cardiac sarcoidosis. J Investig Med. 2016;64(6):1148–50.
Kremastinos DT, Farmakis D. Iron overload cardiomyopathy in clinical practice. Circulation. 2011;124(20):2253–63.
Patel AR, Kramer CM. Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy. JACC Cardiovasc Imaging. 2017;10:1180–93.
Belem LC, Souza CA, Souza AS Jr, Escuissato DL, Hochhegger B, Nobre LF, et al. Metastatic pulmonary calcification: high-resolution computed tomography findings in 23 cases. Radiol Bras. 2017;50(4):231–6.
Enemark A, Jonsson ALM, Kronborg-White S, Bendstrup E. Pulmonary alveolar microlithiasis-a review. Yale J Biol Med. 2021;94(4):637–44.
Crain MA, Lakhani DA, Balar AB, Hogg JP, Adelanwa A, Hailemichael E. Tracheobronchial amyloidosis: a case report and review of literature. Radiol Case Rep. 2021;16(9):2399–403.
Moroni C, Bindi A, Cavigli E, Cozzi D, Luvara S, Smorchkova O, et al. CT findings of non-neoplastic central airways diseases. Jpn J Radiol. 2022;40(2):107–19.
Brandelik SC, Heussel CP, Kauczor HU, Rocken C, Huber L, Basset M, et al. CT features in amyloidosis of the respiratory system - Comprehensive analysis in a tertiary referral center cohort. Eur J Radiol. 2020;129:109123.
Caruso D, Polici M, Zerunian M, Pucciarelli F, Polidori T, Guido G, et al. Quantitative Chest CT analysis in discriminating COVID-19 from non-COVID-19 patients. Radiologia Medica. 2021;126(2):243–9.
Akira M, Inoue Y, Arai T, Sugimoto C, Tokura S, Nakata K, et al. Pulmonary fibrosis on high-resolution CT of patients with pulmonary alveolar proteinosis. AJR Am J Roentgenol. 2016;207(3):544–51.
Cozzi D, Cavigli E, Moroni C, Smorchkova O, Zantonelli G, Pradella S, et al. Ground-glass opacity (GGO): a review of the differential diagnosis in the era of COVID-19. Jpn J Radiol. 2021;39(8):721–32.
Parker EI, Xing M, Moreno-De-Luca A, Harmouche E, Terk MR. Radiological and clinical characterization of the lysosomal storage disorders: non-lipid disorders. Br J Radiol. 2014;87(1033):20130467.
Wilmer MJ, Emma F, Levtchenko EN. The pathogenesis of cystinosis: mechanisms beyond cystine accumulation. Am J Physiol Renal Physiol. 2010;299(5):F905–16.
Ciccarese F, Brandi N, Corcioni B, Golfieri R, Gaudiano C. Complicated pyelonephritis associated with chronic renal stone disease. Radiologia Medica. 2021;126(4):505–16.
Schiffmann R. Fabry disease. Handb Clin Neurol. 2015;132:231–48.
Chan B, Adam DN. A review of fabry disease. Skin Therapy Lett. 2018;23(2):4–6.
Bernardes TP, Foresto RD, Kirsztajn GM. Fabry disease: genetics, pathology, and treatment. Rev Assoc Med Bras. 2020. https://doi.org/10.1590/1806-9282.66.S1.10.
Han JH, Ahn JH, Kim JS. Magnetic resonance elastography for evaluation of renal parenchyma in chronic kidney disease: a pilot study. Radiol Med. 2020;125(12):1209–15.
Dev S, Babitt JL. Overview of iron metabolism in health and disease. Hemodial Int. 2017;21(Suppl 1):S6–20.
Schein A, Enriquez C, Coates TD, Wood JC. Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis. J Magn Reson Imaging. 2008;28(3):698–704.
Dahlqvist P, Isaksson M, Bensing S. Is Adrenal insufficiency a rare disease? Front Horm Res. 2016;46:106–14.
Eslam M, Sanyal AJ, George J, International Consensus P. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158(7):1999-2014 e1.
Shin N, Choi JA, Choi JM, Cho ES, Kim JH, Chung JJ, et al. Sclerotic changes of cavernous hemangioma in the cirrhotic liver: long-term follow-up using dynamic contrast-enhanced computed tomography. Radiol Med. 2020;125(12):1225–32.
Gatti M, Calandri M, Bergamasco L, Darvizeh F, Grazioli L, Inchingolo R, et al. Characterization of the arterial enhancement pattern of focal liver lesions by multiple arterial phase magnetic resonance imaging: comparison between hepatocellular carcinoma and focal nodular hyperplasia. Radiol Med. 2020;125(4):348–55.
Vernuccio F, Cannella R, Bartolotta TV, Galia M, Tang A, Brancatelli G. Advances in liver US, CT, and MRI: moving toward the future. Eur Radiol Exp. 2021;5(1):52.
Dioguardi Burgio M, Ronot M, Reizine E, Rautou PE, Castera L, Paradis V, et al. Quantification of hepatic steatosis with ultrasound: promising role of attenuation imaging coefficient in a biopsy-proven cohort. Eur Radiol. 2020;30(4):2293–301.
Hirooka M, Koizumi Y, Sunago K, Nakamura Y, Hirooka K, Watanabe T, et al. Efficacy of B-mode ultrasound-based attenuation for the diagnosis of hepatic steatosis: a systematic review/meta-analysis. J Med Ultrason (2001). 2022;49(2):199–210.
Argalia G, Tarantino G, Ventura C, Campioni D, Tagliati C, Guardati P, et al. Shear wave elastography and transient elastography in HCV patients after direct-acting antivirals. Radiologia Medica. 2021;126(6):894–9.
Tang A, Desai A, Hamilton G, Wolfson T, Gamst A, Lam J, et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology. 2015;274(2):416–25.
Gu J, Liu S, Du S, Zhang Q, Xiao J, Dong Q, et al. Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis. Eur Radiol. 2019;29(7):3564–73.
Hyodo T, Hori M, Lamb P, Sasaki K, Wakayama T, Chiba Y, et al. Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-Kilovolt-Peak switching dual-energy CT: experimental validation. Radiology. 2017;282(2):381–9.
Cicero G, Mazziotti S, Silipigni S, Blandino A, Cantisani V, Pergolizzi S, et al. Dual-energy CT quantification of fractional extracellular space in cirrhotic patients: comparison between early and delayed equilibrium phases and correlation with oesophageal varices. Radiologia Medica. 2021;126(6):761–7.
Bottari A, Silipigni S, Carerj ML, Cattafi A, Maimone S, Marino MA, et al. Dual-source dual-energy CT in the evaluation of hepatic fractional extracellular space in cirrhosis. Radiol Med. 2020;125(1):7–14.
Chen ZY, Liu YP, Zheng GJ. Computed tomography and magnetic resonance imaging features of primary and secondary hepatic glycogenosis. Ann Hepatol. 2018;17(6):903–5.
Vernuccio F, Austin S, Meyer M, Guy CD, Kishnani PS, Marin D. “Bull’s eye” appearance of hepatocellular adenomas in patients with glycogen storage disease type I-atypical magnetic resonance imaging findings: two case reports. World J Clin Cases. 2021;9(4):871–7.
Li J, Cao B, Bi X, Chen W, Wang L, Du Z, et al. Evaluation of liver function in patients with chronic hepatitis B using Gd-EOB-DTPA-enhanced T1 mapping at different acquisition time points: a feasibility study. Radiologia Medica. 2021;126(9):1149–58.
Werner S, Krauss B, Haberland U, Bongers M, Starke U, Bakchoul T, et al. Dual-energy CT for liver iron quantification in patients with haematological disorders. Eur Radiol. 2019;29(6):2868–77.
Cicero G, Ascenti G, Albrecht MH, Blandino A, Cavallaro M, D’Angelo T, et al. Extra-abdominal dual-energy CT applications: a comprehensive overview. Radiol Med. 2020;125(4):384–97.
Dohan A, Vargas O, Dautry R, Guerrache Y, Woimant F, Hamzi L, et al. MR imaging features of focal liver lesions in Wilson disease. Abdom Radiol (NY). 2016;41(9):1811–24.
Ozcan HN, Haliloglu M, Sokmensuer C, Akata D, Ozmen M, Karcaaltincaba M. Imaging for abdominal involvement in amyloidosis. Diagn Interv Radiol. 2017;23(4):282–5.
Patel BN, Routine MR. Imaging for pancreas. Magn Reson Imaging Clin N Am. 2018;26(3):315–22.
Hill DV, Tirkes T. Advanced MR imaging of the pancreas. Magn Reson Imaging Clin N Am. 2020;28(3):353–67.
Higashi M, Tanabe M, Okada M, Furukawa M, Iida E, Ito K. Influence of fat deposition on T1 mapping of the pancreas: evaluation by dual-flip-angle MR imaging with and without fat suppression. Radiol Med. 2020;125(1):1–6.
Harrington KA, Shukla-Dave A, Paudyal R, Do RKG. MRI of the pancreas. J Magn Reson Imaging. 2021;53(2):347–59.
Chiti G, Grazzini G, Cozzi D, Danti G, Matteuzzi B, Granata V, et al. Imaging of pancreatic neuroendocrine neoplasms. Int J Environ Res Public Health. 2021. https://doi.org/10.3390/ijerph18178895.
Brizi MG, Perillo F, Cannone F, Tuzza L, Manfredi R. The role of imaging in acute pancreatitis. Radiologia Medica. 2021;126(8):1017–29.
Mentzel HJ, Renz DM. Abdominal imaging in cystic fibrosis. Radiologe. 2020;60(9):831–8.
Sequeiros IM, Hester K, Callaway M, Williams A, Garland Z, Powell T, et al. MRI appearance of the pancreas in patients with cystic fibrosis: a comparison of pancreas volume in diabetic and non-diabetic patients. Br J Radiol. 2010;83(995):921–6.
Pfeifer CD, Schoennagel BP, Grosse R, Wang ZJ, Graessner J, Nielsen P, et al. Pancreatic iron and fat assessment by MRI-R2* in patients with iron overload diseases. J Magn Reson Imaging. 2015;42(1):196–203.
Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes. 2002;51(8):2348–54.
Crane GM, Liu YC, Chadburn A. Spleen: development, anatomy and reactive lymphoid proliferations. Semin Diagn Pathol. 2021;38(2):112–24.
Aslan E, Luo JW, Lesage A, Paquin P, Cerny M, Chin AS, et al. MRI-based R2* mapping in patients with suspected or known iron overload. Abdom Radiol (NY). 2021;46(6):2505–15.
Abdel Razek AAK, Barakat T, Ali K. Assessment of liver and spleen in children with gaucher disease type 1 with chemical shift imaging. J Comput Assist Tomogr. 2019;43(2):183–6.
Lama N, Briasoulis A, Karavasilis E, Stamatelopoulos K, Chasouraki A, Alexopoulou E, et al. The utility of splenic imaging parameters in cardiac magnetic resonance for the diagnosis of immunoglobulin light-chain amyloidosis. Insights Imaging. 2022;13(1):55.
Shetty AS, Sipe AL, Zulfiqar M, Tsai R, Raptis DA, Raptis CA, et al. In-phase and opposed-phase imaging: applications of chemical shift and magnetic susceptibility in the chest and abdomen. Radiographics. 2019;39(1):115–35.
Razek AAKA, Abdalla A, Barakat T, El-Taher H, Ali K. Assessment of the liver and spleen in children with Gaucher disease type I with diffusion-weighted MR imaging. Blood Cells Mol Dis. 2018;68:139–42.
Chang CY, Rosenthal DI, Mitchell DM, Handa A, Kattapuram SV, Huang AJ. Imaging findings of metabolic bone disease. Radiographics. 2016;36(6):1871–87.
Chiarilli MG, Delli Pizzi A, Mastrodicasa D, Febo MP, Cardinali B, Consorte B, et al. Bone marrow magnetic resonance imaging: physiologic and pathologic findings that radiologist should know. Radiologia Medica. 2021;126(2):264–76.
Adela A, Rangarajan L. Computational techniques to segment and classify lumbar compression fractures. Radiol Med. 2020;125(6):551–60.
Jimenez-Pastor A, Alberich-Bayarri A, Fos-Guarinos B, Garcia-Castro F, Garcia-Juan D, Glocker B, et al. Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data. Radiol Med. 2020;125(1):48–56.
Guglielmi G, Muscarella S, Bazzocchi A. Integrated imaging approach to osteoporosis: state-of-the-art review and update. Radiographics. 2011;31(5):1343–64.
Kanis JA, Cooper C, Rizzoli R, Reginster JY, Scientific Advisory Board of the European Society for C, Economic Aspects of O, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3–44.
Lewiecki EM, Gordon CM, Baim S, Leonard MB, Bishop NJ, Bianchi ML, et al. International society for clinical densitometry 2007 adult and pediatric official positions. Bone. 2008;43(6):1115–21.
Momeni M, Asadzadeh M, Mowla K, Hanafi MG, Gharibvand MM, Sahraeizadeh A. Sensitivity and specificity assessment of DWI and ADC for the diagnosis of osteoporosis in postmenopausal patients. Radiol Med. 2020;125(1):68–74.
Messina C, Maffi G, Vitale JA, Ulivieri FM, Guglielmi G, Sconfienza LM. Diagnostic imaging of osteoporosis and sarcopenia: a narrative review. Quant Imaging Med Surg. 2018;8(1):86–99.
Messina C, Piodi LP, Rinaudo L, Buonomenna C, Sconfienza LM, Vergani L, et al. Reproducibility of DXA-based bone strain index and the influence of body mass: an in vivo study. Radiol Med. 2020;125(3):313–8.
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31.
Hirschfeld HP, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int. 2017;28(10):2781–90.
Vitale JA, Messina C, Albano D, Fascio E, Galbusera F, Corbetta S, et al. Appendicular muscle mass, thigh intermuscular fat infiltration, and risk of fall in postmenopausal osteoporotic elder women. Gerontology. 2021;67(4):415–24.
Petak S, Barbu CG, Yu EW, Fielding R, Mulligan K, Sabowitz B, et al. The official positions of the international society for clinical densitometry: body composition analysis reporting. J Clin Densitom. 2013;16(4):508–19.
Chianca V, Albano D, Messina C, Gitto S, Ruffo G, Guarino S, et al. Sarcopenia: imaging assessment and clinical application. Abdom Radiol (NY). 2021;23:1–2.
James RA, Singh-Grewal D, Lee SJ, McGill J, Adib N, Rheumatology AP, G. Lysosomal storage disorders: a review of the musculoskeletal features. J Paediatr Child Health. 2016;52(3):262–71.
Musumeci O, Barca E, Lamperti C, Servidei S, Comi GP, Moggio M, et al. Lipomatosis incidence and characteristics in an italian cohort of mitochondrial patients. Front Neurol. 2019;10:160.
Cellina M, Gibelli D, Floridi C, Oliva G. Volumetric analysis of non-contrast magnetic resonance lymphangiography in patients affected by lower extremities primary lymphedema. Radiol Med. 2020;125(4):432–5.
Gentili F, Guerrini S, Mazzei FG, Volterrani L, Mazzei MA. MRL as one-shot examination for patients suffering from lymphedema. Radiol Med. 2020;125(8):798–9.
Cellina M, Gibelli D, Martinenghi C, Giardini D, Soresina M, Menozzi A, et al. Non-contrast magnetic resonance lymphography (NCMRL) in cancer-related secondary lymphedema: acquisition technique and imaging findings. Radiol Med. 2021;126(11):1477–86.
Gemignani F, Pietrini V, Tagliavini F, Lechi A, Neri TM, Asinari A, et al. Fabry’s disease with familial lymphedema of the lower limbs. Case report and family study. Eur Neurol. 1979;18(2):84–90.
Bordonaro V, Ciancarella P, Ciliberti P, Curione D, Napolitano C, Santangelo TP, et al. Dynamic contrast-enhanced magnetic resonance lymphangiography in pediatric patients with central lymphatic system disorders. Radiologia Medica. 2021;126(5):737–43.
Orteu CH, Jansen T, Lidove O, Jaussaud R, Hughes DA, Pintos-Morell G, et al. Fabry disease and the skin: data from FOS, the Fabry outcome survey. Br J Dermatol. 2007;157(2):331–7.
Politei J, Thurberg BL, Wallace E, Warnock D, Serebrinsky G, Durand C, et al. Gastrointestinal involvement in Fabry disease. So important, yet often neglected. Clin Genet. 2016;89(1):5–9.
Amiri M, Kuech EM, Shammas H, Wetzel G, Naim HY. The Pathobiochemistry of gastrointestinal symptoms in a patient with niemann-pick type C disease. JIMD Rep. 2016;25:25–9.
Kim SH, Han JK, Lee KH, Won HJ, Kim KW, Kim JS, et al. Abdominal amyloidosis: spectrum of radiological findings. Clin Radiol. 2003;58(8):610–20.
Buda P, Wieteska-Klimczak A, Ksiazyk J, Gietka P, Smorczewska-Kiljan A, Pronicki M, et al. Gastrointestinal phenotype of fabry disease in a patient with pseudoobstruction syndrome. JIMD Rep. 2012;4:25–8.
Flynn DM, Lake BD, Boothby CB, Young EP. Gut lesions in Fabry’s disease without a rash. Arch Dis Child. 1972;47(251):26–33.
Cable WJ, Kolodny EH, Adams RD. Fabry disease: impaired autonomic function. Neurology. 1982;32(5):498–502.
Bryan A, Knauft RF, Burns WA. Small bowel perforation in Fabry’s disease. Ann Intern Med. 1977;86(3):315–6.
Lorusso F, Principi M, Pedote P, Pignataro P, Francavilla M, Sardaro A, et al. Prevalence and clinical significance of incidental extra-intestinal findings in MR enterography: experience of a single university centre. Radiologia Medica. 2021;126(2):181–8.
Deniz K, Yurci A, Yagbasan A, Tekelioglu F, Gursoy S, Guven K. Colonic involvement in Fabry disease. Int J Surg Pathol. 2011;19(6):777–8.
Sheth KJ, Werlin SL, Freeman ME, Hodach AE. Gastrointestinal structure and function in Fabry’s disease. Am J Gastroenterol. 1981;76(3):246–51.
Jack CI, Morris AI, Nasmyth DG, Carroll N. Colonic involvement in Fabry’s disease. Postgrad Med J. 1991;67(788):584–5.
Politei J, Durand C, Schenone AB, Torres A, Mukdsi J, Thurberg BL. Chronic intestinal pseudo-obstruction. Did you search for lysosomal storage diseases? Mol Genet Metab Rep. 2017;11:8–11.
Kocic M, Djuricic SM, Djordjevic M, Savic D, Kecman B, Sarajlija A. Appendiceal involvement in a patient with Gaucher disease. Blood Cells Mol Dis. 2018;68:109–11.
Gilat T, Revach M, Sohar E. Deposition of amyloid in the gastrointestinal tract. Gut. 1969;10(2):98–104.
Danti G, Flammia F, Matteuzzi B, Cozzi D, Berti V, Grazzini G, et al. Gastrointestinal neuroendocrine neoplasms (GI-NENs): hot topics in morphological, functional, and prognostic imaging. Radiologia Medica. 2021;126(12):1497–507.
Trinh TD, Jones B, Fishman EK. Amyloidosis of the colon presenting as ischemic colitis: a case report and review of the literature. Gastrointest Radiol. 1991;16(2):133–6.
Napolitano M, Munari AM, Di Leo G, Panarisi NAR, Zuin G, Fava G, et al. MR enterography grading of pediatric ileocolonic Crohn disease activity based on a single bowel segment. Radiologia Medica. 2021;126(11):1396–406.
Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E. A deep look into radiomics. Radiol Med. 2021;126(10):1296–311.
Gurgitano M, Angileri SA, Roda GM, Liguori A, Pandolfi M, Ierardi AM, et al. Interventional radiology ex-machina: impact of Artificial Intelligence on practice. Radiol Med. 2021;126(7):998–1006.
Aerts HJ, Grossmann P, Tan Y, Oxnard GR, Rizvi N, Schwartz LH, et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC. Sci Rep. 2016;6:33860.
Adil MT, Rahman R, Whitelaw D, Jain V, Al-Taan O, Rashid F, et al. SARS-CoV-2 and the pandemic of COVID-19. Postgrad Med J. 2021;97(1144):110–6.
Neri E, Coppola F, Miele V, Bibbolino C, Grassi R. Artificial intelligence: who is responsible for the diagnosis? Radiol Med. 2020;125(6):517–21.
Author information
Authors and Affiliations
Consortia
Contributions
FB and DA had the idea for the article. All authors critically revised the manuscript, commented on drafts of the manuscript, and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical statement
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Bruno, F., Albano, D., Agostini, A. et al. Imaging of metabolic and overload disorders in tissues and organs. Jpn J Radiol 41, 571–595 (2023). https://doi.org/10.1007/s11604-022-01379-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11604-022-01379-7