[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Imaging of metabolic and overload disorders in tissues and organs

  • Invited Review
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Metabolic and overload disorders are a heterogeneous group of relatively uncommon but important diseases. While imaging plays a key role in the early detection and accurate diagnosis in specific organs with a pivotal role in several metabolic pathways, most of these diseases affect different tissues as part of a systemic syndromes. Moreover, since the symptoms are often vague and phenotypes similar, imaging alterations can present as incidental findings, which must be recognized and interpreted in the light of further biochemical and histological investigations. Among imaging modalities, MRI allows, thanks to its multiparametric properties, to obtain numerous information on tissue composition, but many metabolic and accumulation alterations require a multimodal evaluation, possibly using advanced imaging techniques and sequences, not only for the detection but also for accurate characterization and quantification. The purpose of this review is to describe the different alterations resulting from metabolic and overload pathologies in organs and tissues throughout the body, with particular reference to imaging findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ferreira CR, Martinelli D, Blau N. Clinical and biochemical footprints of inherited metabolic diseases VI. Metabolic dermatoses. Mol Genet Metab. 2021;134(1–2):87–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lagergren K, Wahlin K, Mattsson F, Alderson D, Lagergren J. Haemochromatosis and gastrointestinal cancer. Int J Cancer. 2016;139(8):1740–3.

    Article  CAS  PubMed  Google Scholar 

  3. Ferreira CR, Gahl WA. Lysosomal storage diseases. Transl Sci Rare Dis. 2017;2(1–2):1–71.

    PubMed  PubMed Central  Google Scholar 

  4. Messina C, Albano D, Gitto S, Tofanelli L, Bazzocchi A, Ulivieri FM, et al. Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quant Imaging Med Surg. 2020;10(8):1687–98.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Albano D, Messina C, Vitale J, Sconfienza LM. Imaging of sarcopenia: old evidence and new insights. Eur Radiol. 2020;30(4):2199–208.

    Article  PubMed  Google Scholar 

  6. Adams JE. Advances in bone imaging for osteoporosis. Nat Rev Endocrinol. 2013;9(1):28–42.

    Article  CAS  PubMed  Google Scholar 

  7. Queiroz-Andrade M, Blasbalg R, Ortega CD, Rodstein MA, Baroni RH, Rocha MS, et al. MR imaging findings of iron overload. Radiographics. 2009;29(6):1575–89.

    Article  PubMed  Google Scholar 

  8. Chung MJ, Lee KS, Franquet T, Muller NL, Han J, Kwon OJ. Metabolic lung disease: imaging and histopathologic findings. Eur J Radiol. 2005;54(2):233–45.

    Article  PubMed  Google Scholar 

  9. de Oliveira AM, Paulino MV, Vieira APF, McKinney AM, da Rocha AJ, Dos Santos GT, et al. Imaging patterns of toxic and metabolic brain disorders. Radiographics. 2019;39(6):1672–95.

    Article  PubMed  Google Scholar 

  10. Bordonaro V, Ciancarella P, Ciliberti P, Curione D, Napolitano C, Santangelo TP, et al. Dynamic contrast-enhanced magnetic resonance lymphangiography in pediatric patients with central lymphatic system disorders. Radiol Med. 2021;126(5):737–43.

    Article  PubMed  Google Scholar 

  11. Jafari SH, Haseli S, Kaffashan S, Saeedi-Moghadam M, Iranpour P, Zeinali-Rafsanjani B. Assessment of the Hallmarks of Wilson disease in CT scan imaging. J Med Imaging Radiat Sci. 2020;51(1):145–53.

    Article  PubMed  Google Scholar 

  12. Amin K, Mileto A, Kolokythas O. MRI for liver iron quantification: concepts and current methods. Semin Ultrasound CT MR. 2022;43(4):364–70.

    Article  PubMed  Google Scholar 

  13. Hamer OW, Aguirre DA, Casola G, Lavine JE, Woenckhaus M, Sirlin CB. Fatty liver: imaging patterns and pitfalls. Radiographics. 2006;26(6):1637–53.

    Article  PubMed  Google Scholar 

  14. Glass RB, Astrin KH, Norton KI, Parsons R, Eng CM, Banikazemi M, et al. Fabry disease: renal sonographic and magnetic resonance imaging findings in affected males and carrier females with the classic and cardiac variant phenotypes. J Comput Assist Tomogr. 2004;28(2):158–68.

    Article  PubMed  Google Scholar 

  15. Renapurkar RD, Kanne JP. Metabolic and storage lung diseases: spectrum of imaging appearances. Insights Imaging. 2013. https://doi.org/10.1007/s13244-013-0289-x.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rovira A, Alonso J, Cordoba J. MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol. 2008;29(9):1612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paoletti M, Muzic SI, Marchetti F, Farina LM, Bastianello S, Pichiecchio A. Differential imaging of atypical demyelinating lesions of the central nervous system. Radiologia Medica. 2021;126(6):827–42.

    Article  PubMed  Google Scholar 

  18. Santos Andrade C, Tavares Lucato L, Da Martin MGM, Marques-Dias MJ, Portela LAP, Gattas GS, et al. Non-alcoholic Wernicke’s encephalopathy: broadening the clinicoradiological spectrum. Br J Radiol. 2010;83(989):437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim TE, Lee EJ, Young JB, Shin DJ, Kim JH. Wernicke encephalopathy and ethanol-related syndromes. Semin Ultrasound CT MR. 2014;35(2):85–96.

    Article  PubMed  Google Scholar 

  20. Kim DM, Lee IH, Song CJ. Uremic encephalopathy: MR imaging findings and clinical correlation. AJNR Am J Neuroradiol. 2016;37(9):1604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar G, Goyal MK. Lentiform Fork sign: a unique MRI picture. Is metabolic acidosis responsible? Clin Neurol Neurosurg. 2010;112(9):805–12.

    Article  PubMed  Google Scholar 

  22. Bathla G, Policeni B, Agarwal A. Neuroimaging in patients with abnormal blood glucose levels. AJNR Am J Neuroradiol. 2014;35(5):833–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kowkabi S, Nemati R, Mohammadi M, Kaboodkhani R, Omrani A, Ghavipisheh M. Temporal subcortical T2 hypointensity on MRI in Epilepsia partialis continua, a non ketotic hyperglycemia rather than herpes encephalitis. Int J Neurosci. 2020. https://doi.org/10.1080/00207454.2020.1847104.

    Article  PubMed  Google Scholar 

  24. Shoback DM, Bilezikian JP, Costa AG, Dempster D, Dralle H, Khan AA, et al. Presentation of hypoparathyroidism: etiologies and clinical features. J Clin Endocrinol Metab. 2016;101(6):2300–12.

    Article  CAS  PubMed  Google Scholar 

  25. Hayflick SJ, Kurian MA, Hogarth P. Neurodegeneration with brain iron accumulation. Handb Clin Neurol. 2018;147:293–305.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Choi JW, Moon WJ. Gadolinium deposition in the brain: current updates. Korean J Radiol. 2019;20(1):134–47.

    Article  PubMed  Google Scholar 

  27. Sharma P, Eesa M, Scott JN. Toxic and acquired metabolic encephalopathies: MRI appearance. AJR Am J Roentgenol. 2009;193(3):879–86.

    Article  PubMed  Google Scholar 

  28. Uk-I JM, Yu E, Bartlett E, Soobrah R, Kucharczyk W. Acute hyperammonemic encephalopathy in adults: imaging findings. AJNR Am J Neuroradiol. 2011;32(2):413–8.

    Article  Google Scholar 

  29. Albano D, Benenati M, Bruno A, Bruno F, Calandri M, Caruso D, et al. Imaging side effects and complications of chemotherapy and radiation therapy: a pictorial review from head to toe. Insights Imaging. 2021;12(1):76.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McKinney AM, Kieffer SA, Paylor RT, SantaCruz KS, Kendi A, Lucato L. Acute toxic leukoencephalopathy: potential for reversibility clinically and on MRI with diffusion-weighted and FLAIR imaging. AJR Am J Roentgenol. 2009;193(1):192–206.

    Article  PubMed  Google Scholar 

  31. Sahu A, Sankhe S, Mittal K, Kamath N, Pg N, Sahu A. A pictorial review on reversible splenial lesions. Indian J Radiol Imaging. 2021;31(1):3–9.

    PubMed  PubMed Central  Google Scholar 

  32. Bhatia S, Kapoor AK, Sharma A, Gupta R, Kataria S. Cerebral encephalopathy with extrapontine myelinolysis in a case of postpartum hypernatremia. Indian J Radiol Imaging. 2014;24(1):57–60.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Martin RJ. Central pontine and extrapontine myelinolysis: the osmotic demyelination syndromes. J Neurol Neurosurg Psychiatry. 2004. https://doi.org/10.1136/jnnp.2004.04590.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Saroja AO, Naik KR, Mali RV, Kunam SR. “Wine Glass” sign in recurrent postpartum hypernatremic osmotic cerebral demyelination. Ann Indian Acad Neurol. 2013;16(1):106–10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kumar A, Singh AK. Teaching neuroimage: inverted V sign in subacute combined degeneration of spinal cord. Neurology. 2009;72(1): e4.

    Article  PubMed  Google Scholar 

  36. Ravina B, Loevner LA, Bank W. MR findings in subacute combined degeneration of the spinal cord: a case of reversible cervical myelopathy. AJR Am J Roentgenol. 2000;174(3):863–5.

    Article  CAS  PubMed  Google Scholar 

  37. Turna O, Turna IF. Quantitative assessment of cervical spinal cord by diffusion tensor tractography in 3.0.T. Radiologia Medica. 2021;126(1):83–8.

    Article  PubMed  Google Scholar 

  38. Jung JB, Kim Y, Oh K, Kim SA, Doh JH, Oh HJ, et al. Subacute combined degeneration associated with vitamin E deficiency due to small bowel obstruction: a case report. Medicine (Baltimore). 2019;98(36): e17052.

    Article  PubMed  Google Scholar 

  39. Galea N, Polizzi G, Gatti M, Cundari G, Figuera M, Faletti R. Cardiovascular magnetic resonance (CMR) in restrictive cardiomyopathies. Radiologia Medica. 2020;125(11):1072–86.

    Article  PubMed  Google Scholar 

  40. Di Cesare E, Carerj S, Palmisano A, Carerj ML, Catapano F, Vignale D, et al. Multimodality imaging in chronic heart failure. Radiologia Medica. 2021;126(2):231–42.

    Article  PubMed  Google Scholar 

  41. Pierpaolo P, Rolf S, Manuel BP, Davide C, Dresselaers T, Claus P, et al. Left ventricular global myocardial strain assessment: are CMR feature-tracking algorithms useful in the clinical setting? Radiol Med. 2020;125(5):444–50.

    Article  PubMed  Google Scholar 

  42. Esposito A, Francone M, Andreini D, Buffa V, Cademartiri F, Carbone I, et al. SIRM-SIC appropriateness criteria for the use of Cardiac Computed Tomography. Part 1: Congenital heart diseases, primary prevention, risk assessment before surgery, suspected CAD in symptomatic patients, plaque and epicardial adipose tissue characterization, and functional assessment of stenosis. Radiologia Medica. 2021;126(9):1236–48.

    Article  PubMed  Google Scholar 

  43. Esposito A, Gallone G, Palmisano A, Marchitelli L, Catapano F, Francone M. The current landscape of imaging recommendations in cardiovascular clinical guidelines: toward an imaging-guided precision medicine. Radiologia Medica. 2020;125(11):1013–23.

    Article  PubMed  Google Scholar 

  44. Pontone G, Di Cesare E, Castelletti S, De Cobelli F, De Lazzari M, Esposito A, et al. Appropriate use criteria for cardiovascular magnetic resonance imaging (CMR): SIC-SIRM position paper part 1 (ischemic and congenital heart diseases, cardio-oncology, cardiac masses and heart transplant). Radiologia Medica. 2021;126(3):365–79.

    Article  PubMed  Google Scholar 

  45. Pradella S, Grazzini G, De Amicis C, Letteriello M, Acquafresca M, Miele V. Cardiac magnetic resonance in hypertrophic and dilated cardiomyopathies. Radiologia Medica. 2020;125(11):1056–71.

    Article  PubMed  Google Scholar 

  46. Buffa V, Di Renzi P. CMR in the diagnosis of ischemic heart disease. Radiologia Medica. 2020;125(11):1114–23.

    Article  PubMed  Google Scholar 

  47. Liguori C, Farina D, Vaccher F, Ferrandino G, Bellini D, Carbone I. Myocarditis: imaging up to date. Radiol Med. 2020;125(11):1124–34.

    Article  PubMed  PubMed Central  Google Scholar 

  48. van Assen M, Muscogiuri G, Caruso D, Lee SJ, Laghi A, De Cecco CN. Artificial intelligence in cardiac radiology. Radiol Med. 2020;125(11):1186–99.

    Article  PubMed  Google Scholar 

  49. Russo V, Lovato L, Ligabue G. Cardiac MRI: technical basis. Radiol Med. 2020;125(11):1040–55.

    Article  PubMed  Google Scholar 

  50. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2016;18(1):89.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pierpaolo P, Rolf S, Manuel B-P, Davide C, Dresselaers T, Claus P, et al. Left ventricular global myocardial strain assessment: are CMR feature-tracking algorithms useful in the clinical setting? Radiologia Medica. 2020;125(5):444–50.

    Article  PubMed  Google Scholar 

  52. Palumbo P, Masedu F, De Cataldo C, Cannizzaro E, Bruno F, Pradella S, et al. Real-world clinical validity of cardiac magnetic resonance tissue tracking in primitive hypertrophic cardiomyopathy. Radiologia Medica. 2021;126(12):1532–43.

    Article  PubMed  Google Scholar 

  53. Maurer MS, Elliott P, Comenzo R, Semigran M, Rapezzi C. Addressing common questions encountered in the diagnosis and management of cardiac amyloidosis. Circulation. 2017;135(14):1357–77.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Benson MD, Buxbaum JN, Eisenberg DS, Merlini G, Saraiva MJM, Sekijima Y, et al. Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid. 2018;25(4):215–9.

    Article  CAS  PubMed  Google Scholar 

  55. Benson MD, Buxbaum JN, Eisenberg DS, Merlini G, Saraiva MJM, Sekijima Y, et al. Amyloid nomenclature 2020: update and recommendations by the international society of amyloidosis (ISA) nomenclature committee. Amyloid. 2020;27(4):217–22.

    Article  CAS  PubMed  Google Scholar 

  56. Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS. Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(22):2872–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–12.

    Article  CAS  PubMed  Google Scholar 

  58. Sipe JD, Benson MD, Buxbaum JN, Ikeda SI, Merlini G, Saraiva MJ, et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification international society of amyloidosis 2016 nomenclature guidelines. Amyloid. 2016;23(4):209–13.

    Article  CAS  PubMed  Google Scholar 

  59. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for multimodality imaging in cardiac amyloidosis: part 1 of 2-evidence base and standardized methods of imaging. J Card Fail. 2019;25(11):e1–39.

    Article  PubMed  Google Scholar 

  60. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 2 of 2-diagnostic criteria and appropriate utilization. J Card Fail. 2019;25(11):854–65.

    Article  PubMed  Google Scholar 

  61. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 1 of 2-evidence base and standardized methods of imaging. J Nucl Cardiol. 2019;26(6):2065–123.

    Article  PubMed  Google Scholar 

  62. Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 2 of 2-diagnostic criteria and appropriate utilization. J Nucl Cardiol. 2020;27(2):659–73.

    Article  PubMed  Google Scholar 

  63. Paeng JC, Choi JY. Nuclear imaging for cardiac amyloidosis: bone scan, SPECT/CT, and amyloid-targeting PET. Nucl Med Mol Imaging. 2021;55(2):61–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garcia-Pavia P, Rapezzi C, Adler Y, Arad M, Basso C, Brucato A, et al. Diagnosis and treatment of cardiac amyloidosis. A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur J Heart Fail. 2021;23(4):512–26.

    Article  PubMed  Google Scholar 

  65. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA Guideline for the management of heart failure: executive summary: a report of the American College Of Cardiology/American Heart Association Joint Committee on clinical Practice Guidelines. J Am Coll Cardiol. 2022;79(17):1757–80.

    Article  PubMed  Google Scholar 

  66. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022;79(17):e263–421.

    Article  PubMed  Google Scholar 

  67. Russo V, Lovato L, Ligabue G. Cardiac MRI: technical basis. Radiologia Medica. 2020;125(11):1040–55.

    Article  PubMed  Google Scholar 

  68. Palmisano A, Darvizeh F, Cundari G, Rovere G, Ferrandino G, Nicoletti V, et al. Advanced cardiac imaging in athlete’s heart: unravelling the grey zone between physiologic adaptation and pathology. Radiologia Medica. 2021;126(12):1518–31.

    Article  PubMed  Google Scholar 

  69. Martinez-Naharro A, Kotecha T, Norrington K, Boldrini M, Rezk T, Quarta C, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2019;12(5):810–9.

    Article  PubMed  Google Scholar 

  70. Treibel TA, Kozor R, Menacho K, Castelletti S, Bulluck H, Rosmini S, et al. Left ventricular hypertrophy revisited: cell and matrix expansion have disease-specific relationships. Circulation. 2017;136(25):2519–21.

    Article  PubMed  Google Scholar 

  71. Zhao L, Tian Z, Fang Q. Diagnostic accuracy of cardiovascular magnetic resonance for patients with suspected cardiac amyloidosis: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2016;16:129.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kotecha T, Martinez-Naharro A, Treibel TA, Francis R, Nordin S, Abdel-Gadir A, et al. Myocardial edema and prognosis in amyloidosis. J Am Coll Cardiol. 2018;71(25):2919–31.

    Article  PubMed  Google Scholar 

  73. Monserrat L, Gimeno-Blanes JR, Marin F, Hermida-Prieto M, Garcia-Honrubia A, Perez I, et al. Prevalence of Fabry disease in a cohort of 508 unrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2007;50(25):2399–403.

    Article  PubMed  Google Scholar 

  74. Branton MH, Schiffmann R, Sabnis SG, Murray GJ, Quirk JM, Altarescu G, et al. Natural history of Fabry renal disease: influence of alpha-galactosidase a activity and genetic mutations on clinical course. Medicine (Baltimore). 2002;81(2):122–38.

    Article  CAS  PubMed  Google Scholar 

  75. Germain DP. A new phenotype of Fabry disease with intermediate severity between the classical form and the cardiac variant. Contrib Nephrol. 2001;136:234–40.

    Article  CAS  Google Scholar 

  76. Germain DP. Fabry disease: recent advances in enzyme replacement therapy. Expert Opin Investig Drugs. 2002;11(10):1467–76.

    Article  CAS  PubMed  Google Scholar 

  77. Germain DP. General aspects of X-linked diseases. In: Mehta AG, editor. Fabry Disease: Perspectives from 5 years of FOS. Oxford; 2006.

    Google Scholar 

  78. Germain DP. Fabry disease: the need to stratify patient populations to better understand the outcome of enzyme replacement therapy. Clin Ther. 2007. https://doi.org/10.1016/s0149-2918(07)80122-6.

    Article  PubMed  Google Scholar 

  79. Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Germain DP, Arad M, Burlina A, Elliott PM, Falissard B, Feldt-Rasmussen U, et al. The effect of enzyme replacement therapy on clinical outcomes in female patients with Fabry disease-a systematic literature review by a European panel of experts. Mol Genet Metab. 2019;126(3):224–35.

    Article  CAS  PubMed  Google Scholar 

  81. Germain DP, Benistan K, Angelova L. X-linked inheritance and its implication in the diagnosis and management of female patients in Fabry disease. Rev Med Interne. 2010;31(Suppl 2):S209–13.

    Article  PubMed  Google Scholar 

  82. Germain DP, Bruneval P, Tran TC, Balouet P, Richalet B, Benistan K. Uneventful pregnancy outcome after enzyme replacement therapy with agalsidase beta in a heterozygous female with Fabry disease: a case report. Eur J Med Genet. 2010;53(2):111–2.

    Article  PubMed  Google Scholar 

  83. Germain DP, Charrow J, Desnick RJ, Guffon N, Kempf J, Lachmann RH, et al. Ten-year outcome of enzyme replacement therapy with agalsidase beta in patients with Fabry disease. J Med Genet. 2015;52(5):353–8.

    Article  CAS  PubMed  Google Scholar 

  84. Germain DP, Elliott PM, Falissard B, Fomin VV, Hilz MJ, Jovanovic A, et al. The effect of enzyme replacement therapy on clinical outcomes in male patients with Fabry disease: a systematic literature review by a European panel of experts. Mol Genet Metab Rep. 2019;19: 100454.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Germain DP, Fouilhoux A, Decramer S, Tardieu M, Pillet P, Fila M, et al. Consensus recommendations for diagnosis, management and treatment of Fabry disease in paediatric patients. Clin Genet. 2019;96(2):107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Germain DP, Giugliani R, Hughes DA, Mehta A, Nicholls K, Barisoni L, et al. Safety and pharmacodynamic effects of a pharmacological chaperone on alpha-galactosidase a activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies. Orphanet J Rare Dis. 2012;7:91.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Germain DP, Levade T, Hachulla E, Knebelmann B, Lacombe D, Seguin VL, et al. Challenging the traditional approach for interpreting genetic variants: lessons from Fabry disease. Clin Genet. 2022;101(4):390–402.

    Article  CAS  PubMed  Google Scholar 

  88. Germain DP, Moiseev S, Suarez-Obando F, Al Ismaili F, Al Khawaja H, Altarescu G, et al. The benefits and challenges of family genetic testing in rare genetic diseases-lessons from Fabry disease. Mol Genet Genomic Med. 2021;9(5):e1666.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Germain DP, Weidemann F, Abiose A, Patel MR, Cizmarik M, Cole JA, et al. Analysis of left ventricular mass in untreated men and in men treated with agalsidase-beta: data from the Fabry registry. Genet Med. 2013;15(12):958–65.

    Article  CAS  PubMed  Google Scholar 

  90. Tower-Rader A, Jaber WA. Multimodality imaging assessment of Fabry disease. Circ Cardiovasc Imaging. 2019;12(11):e009013.

    Article  PubMed  Google Scholar 

  91. Wu JC, Ho CY, Skali H, Abichandani R, Wilcox WR, Banikazemi M, et al. Cardiovascular manifestations of Fabry disease: relationships between left ventricular hypertrophy, disease severity, and alpha-galactosidase a activity. Eur Heart J. 2010;31(9):1088–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hsu TR, Hung SC, Chang FP, Yu WC, Sung SH, Hsu CL, et al. Later Onset fabry disease, cardiac damage progress in silence: experience with a highly prevalent mutation. J Am Coll Cardiol. 2016;68(23):2554–63.

    Article  PubMed  Google Scholar 

  93. Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the society for cardiovascular magnetic resonance (SCMR) endorsed by the European association for cardiovascular imaging (EACVI). J Cardiovasc Magn Reson. 2017;19(1):75.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nordin S, Kozor R, Vijapurapu R, Augusto JB, Knott KD, Captur G, et al. Myocardial Storage, Inflammation, and cardiac phenotype in Fabry disease after one year of enzyme replacement therapy. Circ Cardiovasc Imaging. 2019;12(12):e009430.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nordin S, Kozor R, Medina-Menacho K, Abdel-Gadir A, Baig S, Sado DM, et al. Proposed stages of myocardial phenotype development in fabry disease. JACC Cardiovasc Imaging. 2019;12(8 Pt 2):1673–83.

    Article  PubMed  Google Scholar 

  96. Nordin S, Kozor R, Bulluck H, Castelletti S, Rosmini S, Abdel-Gadir A, et al. Cardiac Fabry disease with late gadolinium enhancement is a chronic inflammatory cardiomyopathy. J Am Coll Cardiol. 2016;68(15):1707–8.

    Article  PubMed  Google Scholar 

  97. Nordin S, Kozor R, Baig S, Abdel-Gadir A, Medina-Menacho K, Rosmini S, et al. Cardiac phenotype of prehypertrophic Fabry disease. Circ Cardiovasc Imaging. 2018;11(6):e007168.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Niemann M, Herrmann S, Hu K, Breunig F, Strotmann J, Beer M, et al. Differences in Fabry cardiomyopathy between female and male patients: consequences for diagnostic assessment. JACC Cardiovasc Imaging. 2011;4(6):592–601.

    Article  PubMed  Google Scholar 

  99. Weidemann F, Beer M, Kralewski M, Siwy J, Kampmann C. Early detection of organ involvement in Fabry disease by biomarker assessment in conjunction with LGE cardiac MRI: results from the SOPHIA study. Mol Genet Metab. 2019;126(2):169–82.

    Article  CAS  PubMed  Google Scholar 

  100. Kramer J, Niemann M, Stork S, Frantz S, Beer M, Ertl G, et al. Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease. Am J Cardiol. 2014;114(6):895–900.

    Article  PubMed  Google Scholar 

  101. Hagege A, Reant P, Habib G, Damy T, Barone-Rochette G, Soulat G, et al. Fabry disease in cardiology practice: literature review and expert point of view. Arch Cardiovasc Dis. 2019;112(4):278–87.

    Article  PubMed  Google Scholar 

  102. Markatis E, Afthinos A, Antonakis E, Papanikolaou IC. Cardiac sarcoidosis: diagnosis and management. Rev Cardiovasc Med. 2020;21(3):321–38.

    Article  PubMed  Google Scholar 

  103. Trivieri MG, Spagnolo P, Birnie D, Liu P, Drake W, Kovacic JC, et al. Challenges in cardiac and pulmonary sarcoidosis: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;76(16):1878–901.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tadic M, Cuspidi C, Saeed S, Milojevic B, Milojevic IG. The role of cardiac magnetic resonance in diagnosis of cardiac sarcoidosis. Heart Fail Rev. 2021;26(3):653–60.

    Article  PubMed  Google Scholar 

  105. Kouranos V, Sharma R. Cardiac sarcoidosis: state-of-the-art review. Heart. 2021;107(19):1591–9.

    Article  CAS  PubMed  Google Scholar 

  106. Chareonthaitawee P, Beanlands RS, Chen W, Dorbala S, Miller EJ, Murthy VL, et al. Joint SNMMI-ASNC expert consensus document on the role of (18)F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. J Nucl Cardiol. 2017;24(5):1741–58.

    Article  PubMed  Google Scholar 

  107. Okada DR, Saad E, Wand AL, Griffin JM, Kasper EK, Chen EH, et al. Effect of corticosteroid dose and duration on 18-fluorodeoxyglucose positron emission tomography in cardiac sarcoidosis. JACC Cardiovasc Imaging. 2020;13(5):1280–2.

    Article  PubMed  Google Scholar 

  108. Ning N, Guo HH, Iagaru A, Mittra E, Fowler M, Witteles R. Serial cardiac FDG-PET for the diagnosis and therapeutic guidance of patients with cardiac sarcoidosis. J Card Fail. 2019;25(4):307–11.

    Article  PubMed  Google Scholar 

  109. Aitken M, Chan MV, Urzua Fresno C, Farrell A, Islam N, McInnes MDF, et al. Diagnostic accuracy of cardiac MRI versus FDG PET for cardiac sarcoidosis: a systematic review and meta-analysis. Radiology. 2022. https://doi.org/10.1148/radiol.21317.

    Article  PubMed  Google Scholar 

  110. Amano Y, Tachi M, Tani H, Mizuno K, Kobayashi Y, Kumita S. T2-weighted cardiac magnetic resonance imaging of edema in myocardial diseases. ScientificWorldJournal. 2012;2012:194069.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Liguori C, Farina D, Vaccher F, Ferrandino G, Bellini D, Carbone I. Myocarditis: imaging up to date. Radiologia Medica. 2020;125(11):1124–34.

    Article  PubMed  Google Scholar 

  112. Palumbo P, Cannizzaro E, Di Cesare A, Bruno F, Schicchi N, Giovagnoni A, et al. Cardiac magnetic resonance in arrhythmogenic cardiomyopathies. Radiologia Medica. 2020;125(11):1087–101.

    Article  PubMed  Google Scholar 

  113. Bravo PE, Raghu G, Rosenthal DG, Elman S, Petek BJ, Soine LA, et al. Risk assessment of patients with clinical manifestations of cardiac sarcoidosis with positron emission tomography and magnetic resonance imaging. Int J Cardiol. 2017;241:457–62.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Puntmann VO, Isted A, Hinojar R, Foote L, Carr-White G, Nagel E. T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis. Radiology. 2017;285(1):63–72.

    Article  PubMed  Google Scholar 

  115. Pradella S, Grazzini G, Brandani M, Calistri L, Nardi C, Mori F, et al. Cardiac magnetic resonance in patients with mitral valve prolapse: focus on late gadolinium enhancement and T1 mapping. Eur Radiol. 2019;29(3):1546–54.

    Article  PubMed  Google Scholar 

  116. Greulich S, Deluigi CC, Gloekler S, Wahl A, Zurn C, Kramer U, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013;6(4):501–11.

    Article  PubMed  Google Scholar 

  117. Crouser ED, Ono C, Tran T, He X, Raman SV. Improved detection of cardiac sarcoidosis using magnetic resonance with myocardial T2 mapping. Am J Respir Crit Care Med. 2014;189(1):109–12.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Crouser ED, Ruden E, Julian MW, Raman SV. Resolution of abnormal cardiac MRI T2 signal following immune suppression for cardiac sarcoidosis. J Investig Med. 2016;64(6):1148–50.

    Article  PubMed  Google Scholar 

  119. Kremastinos DT, Farmakis D. Iron overload cardiomyopathy in clinical practice. Circulation. 2011;124(20):2253–63.

    Article  PubMed  Google Scholar 

  120. Patel AR, Kramer CM. Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy. JACC Cardiovasc Imaging. 2017;10:1180–93.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Belem LC, Souza CA, Souza AS Jr, Escuissato DL, Hochhegger B, Nobre LF, et al. Metastatic pulmonary calcification: high-resolution computed tomography findings in 23 cases. Radiol Bras. 2017;50(4):231–6.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Enemark A, Jonsson ALM, Kronborg-White S, Bendstrup E. Pulmonary alveolar microlithiasis-a review. Yale J Biol Med. 2021;94(4):637–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Crain MA, Lakhani DA, Balar AB, Hogg JP, Adelanwa A, Hailemichael E. Tracheobronchial amyloidosis: a case report and review of literature. Radiol Case Rep. 2021;16(9):2399–403.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Moroni C, Bindi A, Cavigli E, Cozzi D, Luvara S, Smorchkova O, et al. CT findings of non-neoplastic central airways diseases. Jpn J Radiol. 2022;40(2):107–19.

    Article  PubMed  Google Scholar 

  125. Brandelik SC, Heussel CP, Kauczor HU, Rocken C, Huber L, Basset M, et al. CT features in amyloidosis of the respiratory system - Comprehensive analysis in a tertiary referral center cohort. Eur J Radiol. 2020;129:109123.

    Article  PubMed  Google Scholar 

  126. Caruso D, Polici M, Zerunian M, Pucciarelli F, Polidori T, Guido G, et al. Quantitative Chest CT analysis in discriminating COVID-19 from non-COVID-19 patients. Radiologia Medica. 2021;126(2):243–9.

    Article  PubMed  Google Scholar 

  127. Akira M, Inoue Y, Arai T, Sugimoto C, Tokura S, Nakata K, et al. Pulmonary fibrosis on high-resolution CT of patients with pulmonary alveolar proteinosis. AJR Am J Roentgenol. 2016;207(3):544–51.

    Article  PubMed  Google Scholar 

  128. Cozzi D, Cavigli E, Moroni C, Smorchkova O, Zantonelli G, Pradella S, et al. Ground-glass opacity (GGO): a review of the differential diagnosis in the era of COVID-19. Jpn J Radiol. 2021;39(8):721–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Parker EI, Xing M, Moreno-De-Luca A, Harmouche E, Terk MR. Radiological and clinical characterization of the lysosomal storage disorders: non-lipid disorders. Br J Radiol. 2014;87(1033):20130467.

    Article  CAS  PubMed  Google Scholar 

  130. Wilmer MJ, Emma F, Levtchenko EN. The pathogenesis of cystinosis: mechanisms beyond cystine accumulation. Am J Physiol Renal Physiol. 2010;299(5):F905–16.

    Article  CAS  PubMed  Google Scholar 

  131. Ciccarese F, Brandi N, Corcioni B, Golfieri R, Gaudiano C. Complicated pyelonephritis associated with chronic renal stone disease. Radiologia Medica. 2021;126(4):505–16.

    Article  PubMed  Google Scholar 

  132. Schiffmann R. Fabry disease. Handb Clin Neurol. 2015;132:231–48.

    Article  PubMed  Google Scholar 

  133. Chan B, Adam DN. A review of fabry disease. Skin Therapy Lett. 2018;23(2):4–6.

    CAS  PubMed  Google Scholar 

  134. Bernardes TP, Foresto RD, Kirsztajn GM. Fabry disease: genetics, pathology, and treatment. Rev Assoc Med Bras. 2020. https://doi.org/10.1590/1806-9282.66.S1.10.

    Article  PubMed  Google Scholar 

  135. Han JH, Ahn JH, Kim JS. Magnetic resonance elastography for evaluation of renal parenchyma in chronic kidney disease: a pilot study. Radiol Med. 2020;125(12):1209–15.

    Article  PubMed  Google Scholar 

  136. Dev S, Babitt JL. Overview of iron metabolism in health and disease. Hemodial Int. 2017;21(Suppl 1):S6–20.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Schein A, Enriquez C, Coates TD, Wood JC. Magnetic resonance detection of kidney iron deposition in sickle cell disease: a marker of chronic hemolysis. J Magn Reson Imaging. 2008;28(3):698–704.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Dahlqvist P, Isaksson M, Bensing S. Is Adrenal insufficiency a rare disease? Front Horm Res. 2016;46:106–14.

    Article  PubMed  Google Scholar 

  139. Eslam M, Sanyal AJ, George J, International Consensus P. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158(7):1999-2014 e1.

    Article  CAS  PubMed  Google Scholar 

  140. Shin N, Choi JA, Choi JM, Cho ES, Kim JH, Chung JJ, et al. Sclerotic changes of cavernous hemangioma in the cirrhotic liver: long-term follow-up using dynamic contrast-enhanced computed tomography. Radiol Med. 2020;125(12):1225–32.

    Article  PubMed  Google Scholar 

  141. Gatti M, Calandri M, Bergamasco L, Darvizeh F, Grazioli L, Inchingolo R, et al. Characterization of the arterial enhancement pattern of focal liver lesions by multiple arterial phase magnetic resonance imaging: comparison between hepatocellular carcinoma and focal nodular hyperplasia. Radiol Med. 2020;125(4):348–55.

    Article  PubMed  Google Scholar 

  142. Vernuccio F, Cannella R, Bartolotta TV, Galia M, Tang A, Brancatelli G. Advances in liver US, CT, and MRI: moving toward the future. Eur Radiol Exp. 2021;5(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Dioguardi Burgio M, Ronot M, Reizine E, Rautou PE, Castera L, Paradis V, et al. Quantification of hepatic steatosis with ultrasound: promising role of attenuation imaging coefficient in a biopsy-proven cohort. Eur Radiol. 2020;30(4):2293–301.

    Article  PubMed  Google Scholar 

  144. Hirooka M, Koizumi Y, Sunago K, Nakamura Y, Hirooka K, Watanabe T, et al. Efficacy of B-mode ultrasound-based attenuation for the diagnosis of hepatic steatosis: a systematic review/meta-analysis. J Med Ultrason (2001). 2022;49(2):199–210.

    Article  PubMed  Google Scholar 

  145. Argalia G, Tarantino G, Ventura C, Campioni D, Tagliati C, Guardati P, et al. Shear wave elastography and transient elastography in HCV patients after direct-acting antivirals. Radiologia Medica. 2021;126(6):894–9.

    Article  PubMed  Google Scholar 

  146. Tang A, Desai A, Hamilton G, Wolfson T, Gamst A, Lam J, et al. Accuracy of MR imaging-estimated proton density fat fraction for classification of dichotomized histologic steatosis grades in nonalcoholic fatty liver disease. Radiology. 2015;274(2):416–25.

    Article  PubMed  Google Scholar 

  147. Gu J, Liu S, Du S, Zhang Q, Xiao J, Dong Q, et al. Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis. Eur Radiol. 2019;29(7):3564–73.

    Article  PubMed  Google Scholar 

  148. Hyodo T, Hori M, Lamb P, Sasaki K, Wakayama T, Chiba Y, et al. Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-Kilovolt-Peak switching dual-energy CT: experimental validation. Radiology. 2017;282(2):381–9.

    Article  PubMed  Google Scholar 

  149. Cicero G, Mazziotti S, Silipigni S, Blandino A, Cantisani V, Pergolizzi S, et al. Dual-energy CT quantification of fractional extracellular space in cirrhotic patients: comparison between early and delayed equilibrium phases and correlation with oesophageal varices. Radiologia Medica. 2021;126(6):761–7.

    Article  PubMed  Google Scholar 

  150. Bottari A, Silipigni S, Carerj ML, Cattafi A, Maimone S, Marino MA, et al. Dual-source dual-energy CT in the evaluation of hepatic fractional extracellular space in cirrhosis. Radiol Med. 2020;125(1):7–14.

    Article  PubMed  Google Scholar 

  151. Chen ZY, Liu YP, Zheng GJ. Computed tomography and magnetic resonance imaging features of primary and secondary hepatic glycogenosis. Ann Hepatol. 2018;17(6):903–5.

    Article  CAS  PubMed  Google Scholar 

  152. Vernuccio F, Austin S, Meyer M, Guy CD, Kishnani PS, Marin D. “Bull’s eye” appearance of hepatocellular adenomas in patients with glycogen storage disease type I-atypical magnetic resonance imaging findings: two case reports. World J Clin Cases. 2021;9(4):871–7.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Li J, Cao B, Bi X, Chen W, Wang L, Du Z, et al. Evaluation of liver function in patients with chronic hepatitis B using Gd-EOB-DTPA-enhanced T1 mapping at different acquisition time points: a feasibility study. Radiologia Medica. 2021;126(9):1149–58.

    Article  PubMed  Google Scholar 

  154. Werner S, Krauss B, Haberland U, Bongers M, Starke U, Bakchoul T, et al. Dual-energy CT for liver iron quantification in patients with haematological disorders. Eur Radiol. 2019;29(6):2868–77.

    Article  PubMed  Google Scholar 

  155. Cicero G, Ascenti G, Albrecht MH, Blandino A, Cavallaro M, D’Angelo T, et al. Extra-abdominal dual-energy CT applications: a comprehensive overview. Radiol Med. 2020;125(4):384–97.

    Article  PubMed  Google Scholar 

  156. Dohan A, Vargas O, Dautry R, Guerrache Y, Woimant F, Hamzi L, et al. MR imaging features of focal liver lesions in Wilson disease. Abdom Radiol (NY). 2016;41(9):1811–24.

    Article  PubMed  Google Scholar 

  157. Ozcan HN, Haliloglu M, Sokmensuer C, Akata D, Ozmen M, Karcaaltincaba M. Imaging for abdominal involvement in amyloidosis. Diagn Interv Radiol. 2017;23(4):282–5.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Patel BN, Routine MR. Imaging for pancreas. Magn Reson Imaging Clin N Am. 2018;26(3):315–22.

    Article  PubMed  Google Scholar 

  159. Hill DV, Tirkes T. Advanced MR imaging of the pancreas. Magn Reson Imaging Clin N Am. 2020;28(3):353–67.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Higashi M, Tanabe M, Okada M, Furukawa M, Iida E, Ito K. Influence of fat deposition on T1 mapping of the pancreas: evaluation by dual-flip-angle MR imaging with and without fat suppression. Radiol Med. 2020;125(1):1–6.

    Article  PubMed  Google Scholar 

  161. Harrington KA, Shukla-Dave A, Paudyal R, Do RKG. MRI of the pancreas. J Magn Reson Imaging. 2021;53(2):347–59.

    Article  PubMed  Google Scholar 

  162. Chiti G, Grazzini G, Cozzi D, Danti G, Matteuzzi B, Granata V, et al. Imaging of pancreatic neuroendocrine neoplasms. Int J Environ Res Public Health. 2021. https://doi.org/10.3390/ijerph18178895.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Brizi MG, Perillo F, Cannone F, Tuzza L, Manfredi R. The role of imaging in acute pancreatitis. Radiologia Medica. 2021;126(8):1017–29.

    Article  PubMed  Google Scholar 

  164. Mentzel HJ, Renz DM. Abdominal imaging in cystic fibrosis. Radiologe. 2020;60(9):831–8.

    Article  PubMed  Google Scholar 

  165. Sequeiros IM, Hester K, Callaway M, Williams A, Garland Z, Powell T, et al. MRI appearance of the pancreas in patients with cystic fibrosis: a comparison of pancreas volume in diabetic and non-diabetic patients. Br J Radiol. 2010;83(995):921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pfeifer CD, Schoennagel BP, Grosse R, Wang ZJ, Graessner J, Nielsen P, et al. Pancreatic iron and fat assessment by MRI-R2* in patients with iron overload diseases. J Magn Reson Imaging. 2015;42(1):196–203.

    Article  PubMed  Google Scholar 

  167. Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes. 2002;51(8):2348–54.

    Article  CAS  PubMed  Google Scholar 

  168. Crane GM, Liu YC, Chadburn A. Spleen: development, anatomy and reactive lymphoid proliferations. Semin Diagn Pathol. 2021;38(2):112–24.

    Article  PubMed  Google Scholar 

  169. Aslan E, Luo JW, Lesage A, Paquin P, Cerny M, Chin AS, et al. MRI-based R2* mapping in patients with suspected or known iron overload. Abdom Radiol (NY). 2021;46(6):2505–15.

    Article  PubMed  Google Scholar 

  170. Abdel Razek AAK, Barakat T, Ali K. Assessment of liver and spleen in children with gaucher disease type 1 with chemical shift imaging. J Comput Assist Tomogr. 2019;43(2):183–6.

    Article  PubMed  Google Scholar 

  171. Lama N, Briasoulis A, Karavasilis E, Stamatelopoulos K, Chasouraki A, Alexopoulou E, et al. The utility of splenic imaging parameters in cardiac magnetic resonance for the diagnosis of immunoglobulin light-chain amyloidosis. Insights Imaging. 2022;13(1):55.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Shetty AS, Sipe AL, Zulfiqar M, Tsai R, Raptis DA, Raptis CA, et al. In-phase and opposed-phase imaging: applications of chemical shift and magnetic susceptibility in the chest and abdomen. Radiographics. 2019;39(1):115–35.

    Article  PubMed  Google Scholar 

  173. Razek AAKA, Abdalla A, Barakat T, El-Taher H, Ali K. Assessment of the liver and spleen in children with Gaucher disease type I with diffusion-weighted MR imaging. Blood Cells Mol Dis. 2018;68:139–42.

    Article  PubMed  Google Scholar 

  174. Chang CY, Rosenthal DI, Mitchell DM, Handa A, Kattapuram SV, Huang AJ. Imaging findings of metabolic bone disease. Radiographics. 2016;36(6):1871–87.

    Article  PubMed  Google Scholar 

  175. Chiarilli MG, Delli Pizzi A, Mastrodicasa D, Febo MP, Cardinali B, Consorte B, et al. Bone marrow magnetic resonance imaging: physiologic and pathologic findings that radiologist should know. Radiologia Medica. 2021;126(2):264–76.

    Article  PubMed  Google Scholar 

  176. Adela A, Rangarajan L. Computational techniques to segment and classify lumbar compression fractures. Radiol Med. 2020;125(6):551–60.

    Article  Google Scholar 

  177. Jimenez-Pastor A, Alberich-Bayarri A, Fos-Guarinos B, Garcia-Castro F, Garcia-Juan D, Glocker B, et al. Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data. Radiol Med. 2020;125(1):48–56.

    Article  PubMed  Google Scholar 

  178. Guglielmi G, Muscarella S, Bazzocchi A. Integrated imaging approach to osteoporosis: state-of-the-art review and update. Radiographics. 2011;31(5):1343–64.

    Article  PubMed  Google Scholar 

  179. Kanis JA, Cooper C, Rizzoli R, Reginster JY, Scientific Advisory Board of the European Society for C, Economic Aspects of O, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2019;30(1):3–44.

    Article  CAS  PubMed  Google Scholar 

  180. Lewiecki EM, Gordon CM, Baim S, Leonard MB, Bishop NJ, Bianchi ML, et al. International society for clinical densitometry 2007 adult and pediatric official positions. Bone. 2008;43(6):1115–21.

    Article  PubMed  Google Scholar 

  181. Momeni M, Asadzadeh M, Mowla K, Hanafi MG, Gharibvand MM, Sahraeizadeh A. Sensitivity and specificity assessment of DWI and ADC for the diagnosis of osteoporosis in postmenopausal patients. Radiol Med. 2020;125(1):68–74.

    Article  PubMed  Google Scholar 

  182. Messina C, Maffi G, Vitale JA, Ulivieri FM, Guglielmi G, Sconfienza LM. Diagnostic imaging of osteoporosis and sarcopenia: a narrative review. Quant Imaging Med Surg. 2018;8(1):86–99.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Messina C, Piodi LP, Rinaudo L, Buonomenna C, Sconfienza LM, Vergani L, et al. Reproducibility of DXA-based bone strain index and the influence of body mass: an in vivo study. Radiol Med. 2020;125(3):313–8.

    Article  PubMed  Google Scholar 

  184. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31.

    Article  PubMed  Google Scholar 

  185. Hirschfeld HP, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int. 2017;28(10):2781–90.

    Article  CAS  PubMed  Google Scholar 

  186. Vitale JA, Messina C, Albano D, Fascio E, Galbusera F, Corbetta S, et al. Appendicular muscle mass, thigh intermuscular fat infiltration, and risk of fall in postmenopausal osteoporotic elder women. Gerontology. 2021;67(4):415–24.

    Article  PubMed  Google Scholar 

  187. Petak S, Barbu CG, Yu EW, Fielding R, Mulligan K, Sabowitz B, et al. The official positions of the international society for clinical densitometry: body composition analysis reporting. J Clin Densitom. 2013;16(4):508–19.

    Article  PubMed  Google Scholar 

  188. Chianca V, Albano D, Messina C, Gitto S, Ruffo G, Guarino S, et al. Sarcopenia: imaging assessment and clinical application. Abdom Radiol (NY). 2021;23:1–2.

    Google Scholar 

  189. James RA, Singh-Grewal D, Lee SJ, McGill J, Adib N, Rheumatology AP, G. Lysosomal storage disorders: a review of the musculoskeletal features. J Paediatr Child Health. 2016;52(3):262–71.

    Article  PubMed  Google Scholar 

  190. Musumeci O, Barca E, Lamperti C, Servidei S, Comi GP, Moggio M, et al. Lipomatosis incidence and characteristics in an italian cohort of mitochondrial patients. Front Neurol. 2019;10:160.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Cellina M, Gibelli D, Floridi C, Oliva G. Volumetric analysis of non-contrast magnetic resonance lymphangiography in patients affected by lower extremities primary lymphedema. Radiol Med. 2020;125(4):432–5.

    Article  PubMed  Google Scholar 

  192. Gentili F, Guerrini S, Mazzei FG, Volterrani L, Mazzei MA. MRL as one-shot examination for patients suffering from lymphedema. Radiol Med. 2020;125(8):798–9.

    Article  PubMed  Google Scholar 

  193. Cellina M, Gibelli D, Martinenghi C, Giardini D, Soresina M, Menozzi A, et al. Non-contrast magnetic resonance lymphography (NCMRL) in cancer-related secondary lymphedema: acquisition technique and imaging findings. Radiol Med. 2021;126(11):1477–86.

    Article  PubMed  Google Scholar 

  194. Gemignani F, Pietrini V, Tagliavini F, Lechi A, Neri TM, Asinari A, et al. Fabry’s disease with familial lymphedema of the lower limbs. Case report and family study. Eur Neurol. 1979;18(2):84–90.

    Article  CAS  PubMed  Google Scholar 

  195. Bordonaro V, Ciancarella P, Ciliberti P, Curione D, Napolitano C, Santangelo TP, et al. Dynamic contrast-enhanced magnetic resonance lymphangiography in pediatric patients with central lymphatic system disorders. Radiologia Medica. 2021;126(5):737–43.

    Article  PubMed  Google Scholar 

  196. Orteu CH, Jansen T, Lidove O, Jaussaud R, Hughes DA, Pintos-Morell G, et al. Fabry disease and the skin: data from FOS, the Fabry outcome survey. Br J Dermatol. 2007;157(2):331–7.

    Article  CAS  PubMed  Google Scholar 

  197. Politei J, Thurberg BL, Wallace E, Warnock D, Serebrinsky G, Durand C, et al. Gastrointestinal involvement in Fabry disease. So important, yet often neglected. Clin Genet. 2016;89(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  198. Amiri M, Kuech EM, Shammas H, Wetzel G, Naim HY. The Pathobiochemistry of gastrointestinal symptoms in a patient with niemann-pick type C disease. JIMD Rep. 2016;25:25–9.

    Article  PubMed  Google Scholar 

  199. Kim SH, Han JK, Lee KH, Won HJ, Kim KW, Kim JS, et al. Abdominal amyloidosis: spectrum of radiological findings. Clin Radiol. 2003;58(8):610–20.

    Article  CAS  PubMed  Google Scholar 

  200. Buda P, Wieteska-Klimczak A, Ksiazyk J, Gietka P, Smorczewska-Kiljan A, Pronicki M, et al. Gastrointestinal phenotype of fabry disease in a patient with pseudoobstruction syndrome. JIMD Rep. 2012;4:25–8.

    Article  PubMed  Google Scholar 

  201. Flynn DM, Lake BD, Boothby CB, Young EP. Gut lesions in Fabry’s disease without a rash. Arch Dis Child. 1972;47(251):26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Cable WJ, Kolodny EH, Adams RD. Fabry disease: impaired autonomic function. Neurology. 1982;32(5):498–502.

    Article  CAS  PubMed  Google Scholar 

  203. Bryan A, Knauft RF, Burns WA. Small bowel perforation in Fabry’s disease. Ann Intern Med. 1977;86(3):315–6.

    Article  CAS  PubMed  Google Scholar 

  204. Lorusso F, Principi M, Pedote P, Pignataro P, Francavilla M, Sardaro A, et al. Prevalence and clinical significance of incidental extra-intestinal findings in MR enterography: experience of a single university centre. Radiologia Medica. 2021;126(2):181–8.

    Article  PubMed  Google Scholar 

  205. Deniz K, Yurci A, Yagbasan A, Tekelioglu F, Gursoy S, Guven K. Colonic involvement in Fabry disease. Int J Surg Pathol. 2011;19(6):777–8.

    Article  PubMed  Google Scholar 

  206. Sheth KJ, Werlin SL, Freeman ME, Hodach AE. Gastrointestinal structure and function in Fabry’s disease. Am J Gastroenterol. 1981;76(3):246–51.

    CAS  PubMed  Google Scholar 

  207. Jack CI, Morris AI, Nasmyth DG, Carroll N. Colonic involvement in Fabry’s disease. Postgrad Med J. 1991;67(788):584–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Politei J, Durand C, Schenone AB, Torres A, Mukdsi J, Thurberg BL. Chronic intestinal pseudo-obstruction. Did you search for lysosomal storage diseases? Mol Genet Metab Rep. 2017;11:8–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kocic M, Djuricic SM, Djordjevic M, Savic D, Kecman B, Sarajlija A. Appendiceal involvement in a patient with Gaucher disease. Blood Cells Mol Dis. 2018;68:109–11.

    Article  PubMed  Google Scholar 

  210. Gilat T, Revach M, Sohar E. Deposition of amyloid in the gastrointestinal tract. Gut. 1969;10(2):98–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Danti G, Flammia F, Matteuzzi B, Cozzi D, Berti V, Grazzini G, et al. Gastrointestinal neuroendocrine neoplasms (GI-NENs): hot topics in morphological, functional, and prognostic imaging. Radiologia Medica. 2021;126(12):1497–507.

    Article  PubMed  Google Scholar 

  212. Trinh TD, Jones B, Fishman EK. Amyloidosis of the colon presenting as ischemic colitis: a case report and review of the literature. Gastrointest Radiol. 1991;16(2):133–6.

    Article  CAS  PubMed  Google Scholar 

  213. Napolitano M, Munari AM, Di Leo G, Panarisi NAR, Zuin G, Fava G, et al. MR enterography grading of pediatric ileocolonic Crohn disease activity based on a single bowel segment. Radiologia Medica. 2021;126(11):1396–406.

    Article  PubMed  Google Scholar 

  214. Scapicchio C, Gabelloni M, Barucci A, Cioni D, Saba L, Neri E. A deep look into radiomics. Radiol Med. 2021;126(10):1296–311.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Gurgitano M, Angileri SA, Roda GM, Liguori A, Pandolfi M, Ierardi AM, et al. Interventional radiology ex-machina: impact of Artificial Intelligence on practice. Radiol Med. 2021;126(7):998–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Aerts HJ, Grossmann P, Tan Y, Oxnard GR, Rizvi N, Schwartz LH, et al. Defining a radiomic response phenotype: a pilot study using targeted therapy in NSCLC. Sci Rep. 2016;6:33860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Adil MT, Rahman R, Whitelaw D, Jain V, Al-Taan O, Rashid F, et al. SARS-CoV-2 and the pandemic of COVID-19. Postgrad Med J. 2021;97(1144):110–6.

    Article  CAS  PubMed  Google Scholar 

  218. Neri E, Coppola F, Miele V, Bibbolino C, Grassi R. Artificial intelligence: who is responsible for the diagnosis? Radiol Med. 2020;125(6):517–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

FB and DA had the idea for the article. All authors critically revised the manuscript, commented on drafts of the manuscript, and approved the final manuscript.

Corresponding author

Correspondence to Federico Bruno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, F., Albano, D., Agostini, A. et al. Imaging of metabolic and overload disorders in tissues and organs. Jpn J Radiol 41, 571–595 (2023). https://doi.org/10.1007/s11604-022-01379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-022-01379-7

Keywords

Navigation