[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multistart algorithm for identifying all optima of nonconvex stochastic functions

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

A Correction to this article was published on 02 July 2024

This article has been updated

Abstract

We propose a multistart algorithm to identify all local minima of a constrained, nonconvex stochastic optimization problem. The algorithm uniformly samples points in the domain and then starts a local stochastic optimization run from any point that is the “probabilistically best” point in its neighborhood. Under certain conditions, our algorithm is shown to asymptotically identify all local optima with high probability; this holds even though our algorithm is shown to almost surely start only finitely many local stochastic optimization runs. We demonstrate the performance of an implementation of our algorithm on nonconvex stochastic optimization problems, including identifying optimal variational parameters for the quantum approximate optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availibility

We do not use any specific dataset in this study. We use simulated data to present our analyses and results. As no specific datasets were employed, no data will be made available.

Change history

References

  1. Gheribi, A.E., Robelin, C., Digabel, S.L., Audet, C., Pelton, A.D.: Calculating all local minima on liquidus surfaces using the FactSage software and databases and the mesh adaptive direct search algorithm. J. Chem. Thermodyn. 43(9), 1323–1330 (2011). https://doi.org/10.1016/j.jct.2011.03.021

    Article  Google Scholar 

  2. Adamcik, J., Mezzenga, R.: Amyloid polymorphism in the protein folding and aggregation energy landscape. Angewandte Chémie Int. Edit. 57(28), 8370–8382 (2018). https://doi.org/10.1002/anie.201713416

    Article  Google Scholar 

  3. Floudas, C., Klepeis, J., Pardalos, P.: Global optimization approaches in protein folding and peptide docking. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science vol. 47, pp. 141–171. Am. Math. Soc. (1999). https://doi.org/10.1090/dimacs/047/07

  4. Li, Z., Scheraga, H.A.: Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. U.S.A. 84(19), 6611–6615 (1987). https://doi.org/10.1073/pnas.84.19.6611

    Article  MathSciNet  Google Scholar 

  5. di Serafino, D., Gomez, S., Milano, L., Riccio, F., Toraldo, G.: A genetic algorithm for a global optimization problem arising in the detection of gravitational waves. J. Global Optim. 48(1), 41–55 (2010). https://doi.org/10.1007/s10898-010-9525-9

    Article  MathSciNet  Google Scholar 

  6. Krishnamoorthy, M., Schulz, H., Ju, X., Wang, W., Leyffer, S., Marshall, Z., Mrenna, S., Müller, J., Kowalkowski, J.B.: Apprentice for event generator tuning. EPJ Web of Conf. 251, 03060 (2021). https://doi.org/10.1051/epjconf/202125103060

    Article  Google Scholar 

  7. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)

    MathSciNet  Google Scholar 

  8. Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter optimization through reversible learning. In: International Conference on Machine Learning, pp. 2113–2122 (2015)

  9. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv:1411.4028 (2014). https://doi.org/10.48550/arXiv.1411.4028

  10. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem. arXiv:1412.6062 (2014). https://doi.org/10.48550/arXiv.1412.6062

  11. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods part I Clustering methods. Math. Program. 39(1), 27–56 (1987). https://doi.org/10.1007/bf02592070

    Article  Google Scholar 

  12. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods part II: Multi level methods. Math. Program. 39(1), 57–78 (1987). https://doi.org/10.1007/bf02592071

    Article  Google Scholar 

  13. Shashaani, S., Hashemi, F.S., Pasupathy, R.: ASTRO-DF: A class of adaptive sampling trust-region algorithms for derivative-free stochastic optimization. SIAM J. Optim. 28(4), 3145–3176 (2018). https://doi.org/10.1137/15m1042425

    Article  MathSciNet  Google Scholar 

  14. Larson, J., Wild, S.M.: Asynchronously parallel optimization solver for finding multiple minima. Math. Program. Comput. 10(3), 303–332 (2018). https://doi.org/10.1007/s12532-017-0131-4

    Article  MathSciNet  Google Scholar 

  15. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97 (1964). https://doi.org/10.1115/1.3653121

    Article  Google Scholar 

  16. Frazier, P.I.: Bayesian optimization. In: Recent Advances in Optimization and Modeling of Contemporary Problems, pp. 255–278. INFORMS TutORials in Operations Research, (2018). https://doi.org/10.1287/educ.2018.0188

  17. Mathesen, L., Pedrielli, G., Ng, S.H., Zabinsky, Z.B.: Stochastic optimization with adaptive restart: A framework for integrated local and global learning. J. Global Optim. 79(1), 87–110 (2020). https://doi.org/10.1007/s10898-020-00937-5

    Article  MathSciNet  Google Scholar 

  18. Locatelli, M.: Relaxing the assumptions of the multilevel single linkage algorithm. J. Global Optim. 13(1), 25–42 (1998). https://doi.org/10.1023/a:1008246031222

    Article  MathSciNet  Google Scholar 

  19. Nguyen, V., Rana, S., Gupta, S., Li, C., Venkatesh, S.: Budgeted batch Bayesian optimization with unknown batch sizes. arXiv:1703.04842 (2017). https://doi.org/10.48550/arXiv.1703.04842

  20. Wessing, S., Preuss, M.: The true destination of EGO is multi-local optimization. In: IEEE Latin American Conference on Computational Intelligence (2017). https://doi.org/10.1109/la-cci.2017.8285677

  21. Krityakierne, T., Shoemaker, C.A.: SOMS: SurrOgate MultiStart algorithm for use with nonlinear programming for global optimization. Int. Trans. Oper. Res. 24(5), 1139–1172 (2015). https://doi.org/10.1111/itor.12190

    Article  MathSciNet  Google Scholar 

  22. Peri, D., Tinti, F.: A multistart gradient-based algorithm with surrogate model for global optimization. Commun. Appl. Ind. Math. 3(1) (2012). https://doi.org/10.1685/journal.caim.393

  23. Regis, R.G., Shoemaker, C.A.: A quasi-multistart framework for global optimization of expensive functions using response surface models. J. Global Optim. 56(4), 1719–1753 (2012). https://doi.org/10.1007/s10898-012-9940-1

    Article  MathSciNet  Google Scholar 

  24. Žilinskas, A., Gillard, J., Scammell, M., Zhigljavsky, A.: Multistart with early termination of descents. J. Global Optim. 79(2), 447–462 (2019). https://doi.org/10.1007/s10898-019-00814-w

    Article  MathSciNet  Google Scholar 

  25. Zheng, R., Li, M.: Multistart global optimization with tunnelling and an evolutionary strategy supervised by a martingale. Eng. Optim., 1–19 (2021). https://doi.org/10.1080/0305215x.2021.1940989

  26. Jin, C., Liu, L.T., Ge, R., Jordan, M.I.: On the local minima of the empirical risk. In: Advances in Neural Information Processing Systems, pp. 4896–4905 (2018)

  27. Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization. Math. Program. 155(1–2), 267–305 (2014). https://doi.org/10.1007/s10107-014-0846-1

    Article  MathSciNet  Google Scholar 

  28. Ghadimi, S., Lan, G.: Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Math. Program. 156(1–2), 59–99 (2015). https://doi.org/10.1007/s10107-015-0871-8

    Article  MathSciNet  Google Scholar 

  29. Hu, W., Li, C.J., Li, L., Liu, J.-G.: On the diffusion approximation of nonconvex stochastic gradient descent. Ann. Math. Sci. Appl. 4(1), 3–32 (2019). https://doi.org/10.4310/amsa.2019.v4.n1.a1

    Article  MathSciNet  Google Scholar 

  30. Durrett, R.: Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, (2010). https://doi.org/10.1017/CBO9780511779398

  31. Brooks, S.H.: A discussion of random methods for seeking maxima. Oper. Res. 6(2), 244–251 (1958). https://doi.org/10.1287/opre.6.2.244

    Article  Google Scholar 

  32. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009). https://doi.org/10.1137/080724083

    Article  MathSciNet  Google Scholar 

  33. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling, pp. 195–203. John Wiley & Sons, Ltd, (2008). https://doi.org/10.1002/9780470770801.app1

  34. Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10(2) (2020). https://doi.org/10.1103/physrevx.10.021067

  35. Shaydulin, R., Safro, I., Larson, J.: Multistart methods for quantum approximate optimization. In: Proceedings of the IEEE High Performance Extreme Computing Conference (2019). https://doi.org/10.1109/hpec.2019.8916288

  36. Cartis, C., Fiala, J., Marteau, B., Roberts, L.: Improving the flexibility and robustness of model-based derivative-free optimization solvers. ACM Trans. Math. Softw. 45(3), 1–41 (2019). https://doi.org/10.1145/3338517

    Article  MathSciNet  Google Scholar 

  37. Huyer, W., Neumaier, A.: SNOBFIT - stable noisy optimization by branch and fit. ACM Trans. Math. Softw. 35(2), 1–25 (2008). https://doi.org/10.1145/1377612.1377613

    Article  MathSciNet  Google Scholar 

  38. Nogueira, F.: Bayesian Optimization: Open source constrained global optimization tool for Python (2014–). https://github.com/fmfn/BayesianOptimization

Download references

Acknowledgements

This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Accelerated Research for Quantum Computing program, under contract number DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Jaiswal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to change in the copyright line of the article.

Appendices

Proofs

Below are the proofs of Lemma 1 and Lemma 2.

Proof of Lemma 1

First, consider the sets

$$\begin{aligned} \mathcal {G}(a;r;n)&:=\left\{ x \in \mathcal {D}: \Vert x- a\Vert \le r \text { and } [f(x)-f(a)] < {\epsilon }_n(x;a) \right\} \text { and } \end{aligned}$$
(21)
$$\begin{aligned} \mathcal {C}(a;r)&:= \left\{ x\in \mathcal {D}: \Vert x- a\Vert \le r \text { and } [f(x)- f(a)] < 0 \right\} . \end{aligned}$$
(22)

Now, observe that using Chebyschev’s inequality and Assumption 2, for all \(x \in \mathcal {G}(a;r;n)\),

$$\begin{aligned} P_{\xi }&\left( {\hat{f}}_n(x) - {\hat{f}}_n(a)> {\epsilon }_n(x;a) \right) \nonumber \\&\le P_{\xi }\left( \left| [{\hat{f}}_n(x) -f(x)] - [{\hat{f}}_n(a)-f(a)] \right| > {\epsilon }_n(x;a) - [f(x)-f(a)] \right) \nonumber \\&\le \frac{1}{({\epsilon }_n(x;a)-[f(x)-f(a)] )^2}{\mathbb {E}}_{\xi }\left[ \left( [{\hat{f}}_n(x) -f(x)] - [{\hat{f}}_n(a)-f(a)]\right) ^2\right] \nonumber \\&= \frac{1}{({\epsilon }_n(x;a)-[f(x)-f(a)] )^2}\Bigg ({\text {Var}}_{\xi }\left[ {\hat{f}}_n(x)\right] + {\text {Var}}_{\xi }\left[ {\hat{f}}_n(a)\right] - 2{\text {Cov}}_{\xi }\left[ {\hat{f}}_n(x),{\hat{f}}_n(a)\right] \Bigg ) \nonumber \\&= \frac{{\text {Var}}_{\xi }\left[ {\hat{f}}_n(x)-{\hat{f}}_n(a)\right] }{({\epsilon }_n(x;a)-[f(x)-f(a)] )^2}. \end{aligned}$$
(23)

Since \(x \in \mathcal {G}(a;r;n)\) implies \({\epsilon }_n(x;a)> [f(x)- f(a)]\), therefore

$$\begin{aligned}\left\{ x \in \mathcal {D}: \frac{{\text {Var}}_{\xi }\left[ {\hat{f}}_n(x)-{\hat{f}}_n(a) \right] }{({\epsilon }_n(x;a)-[f(x)-f(a)] )^2} \beta \right\} \nonumber \\= \left\{ x \in \mathcal {D}: f(x)- f(a) {\epsilon }_n(x;a) - \sqrt{\beta ^{-1}{{\text {Var}}_{\xi }\left[ {\hat{f}}_n(x)-{\hat{f}}_n(a) \right] }} \right\} . \end{aligned}$$
(24)

Next, recall the definition of \(\mathcal {A}\left( a;r;n;\beta \right)\), and observe that Eqs. (23) and (24) together imply that

$$\begin{aligned} \bigg \{x\in \mathcal {D}: \Vert x- a\Vert \le r \text { and } f(x)- f(a) {\epsilon }_n(x;a) \nonumber \\ - \sqrt{\beta ^{-1}{{\text {Var}}_{\xi }\left[ {\hat{f}}_n(x)-{\hat{f}}_n(a) \right] }} \bigg \}\subseteq \mathcal {A}\left( a;r;n;\beta \right) , \end{aligned}$$
(25)

for all \(x \in \mathcal {G}(a;r;n)\). Since \({\epsilon }_n(x;a) = \sqrt{\frac{{\text {Var}}_{\xi }\left[ {\hat{f}}_n(x)-{\hat{f}}_n(a) \right] }{\beta }}\), Eq. (25) implies that

$$\begin{aligned} \mathcal {C}(a;r) \cap \mathcal {G}(a;r;n) \subseteq \mathcal {A}\left( a;r;n;\beta \right) \cap \mathcal {G}(a;r;n). \end{aligned}$$
(26)

Observe that \(\mathcal {C}(a;r)\subseteq \mathcal {G}(a;r;n)\) and \(\mathcal {A}\left( a;r;n;\beta \right) \cap \mathcal {G}(a;r;n) \subseteq \mathcal {A}\left( a;r;n;\beta \right)\); Therefore it follows from (26) that

$$\begin{aligned} \mathcal {C}(a;r) \subseteq \mathcal {A}\left( a;r;n;\beta \right) . \end{aligned}$$
(27)

Recall that \(\mathcal {T}_{\omega }\) is the union of \(\omega\)-radius balls centered at stationary points of f in \(\mathcal {D}\). Now consider \(a \in \mathcal {D}{\setminus } (\mathcal {Q}_{\tau }\cup \mathcal {T}_{\omega }) \}\). Define the set

$$\begin{aligned} \mathcal {E}(a;r;\rho ):= \left\{ x\in \mathcal {D}: \Vert x- a\Vert \le r \text { and } \nabla f(a)^T(x-a) + \frac{1}{2} \rho r^2 \le 0 \right\} , \end{aligned}$$

where \(\rho\) is the largest eigenvalue of \(\nabla ^2 f(x)\) for \(x \in \mathcal {D}\). Using the Taylor expansion of f around a, we know that for all \(x\in \mathcal {D}\), with \(\Vert x-a\Vert \le r\), there exists a \(\theta \in [0,1]\) such that

$$\begin{aligned} f(x) - f(a)&= \nabla f(a)^T(x-a) + \frac{1}{2}(x-a)^T \nabla ^2 f(a + \theta (x-a) ) (x-a) . \end{aligned}$$
(28)

For ease of reference, let \(H = \nabla ^2 f(a + \theta (x-a) ) = H\) and \(v = x-a\).

Since f is twice continuously differentiable by Assumption 1.1, its Hessian is always real and symmetric, satisfying \(v^T H v \le \rho v^Tv\) for all \(v \in \mathbb {R}^d\). It follows from (28) that

$$\begin{aligned} f(x) - f(a)&\le \nabla f(a)^T(x-a) + \frac{1}{2} \rho (x-a)^T (x-a) \le \nabla f(a)^T(x-a) + \frac{1}{2} \rho r^2. \end{aligned}$$
(29)

Equation (29) implies that \(\mathcal {E}(a;r;\rho ) \subseteq \mathcal {C}(a;r) \subseteq \mathcal {A}\left( a;r;n;\beta \right)\). For a given \(a\in \mathcal {D}\), \(m( \mathcal {B}\left( a;r \right) ) \le r^d \frac{\pi ^{d/2} }{ \mathrm {\Gamma }(1+ d/2)}\), where \(\mathrm {\Gamma }(\cdot )\) is the gamma function. Now using the lower bound on \(m(\mathcal {E}(a;r;\rho ))\) derived in Lemma 7 of [11], we obtain

$$\begin{aligned} \lim _{r \rightarrow 0} \frac{m(\mathcal {A}\left( a;r;n;\beta \right) )}{m ( \mathcal {B}\left( a;r \right) )} \ge \lim _{r \rightarrow 0} \frac{m(\mathcal {E}(a;r;\rho ))}{m ( \mathcal {B}\left( a;r \right) )} \ge \lim _{r \rightarrow 0} \frac{1}{2} - \frac{\pi ^{-d/2}}{2p\mathrm {\Gamma }(1 + \frac{d-1}{2})} \frac{\rho r}{2} = \frac{1}{2}, \end{aligned}$$
(30)

where \(p = \min \{ \Vert \nabla f(a)\Vert , a \in \mathcal {D}{\setminus } (\mathcal {Q}_{\tau }\cup \mathcal {T}_{\omega }) \}\) for any \(k \in \mathbb {N}\). (Note that \(p > 0\) by construction.) Therefore (30) implies that for all \(a \in \mathcal {D}{\setminus } (\mathcal {Q}_{\tau }\cup \mathcal {T}_{\omega })\)

$$\begin{aligned} \lim _{r \rightarrow 0} \frac{m(\mathcal {A}\left( a;r;n;\beta \right) )}{m ( \mathcal {B}\left( a;r \right) )} \ge \frac{1}{2}. \end{aligned}$$

\(\square\)

Proof of Lemma 2

For any \(a\in\) \(S_k\setminus ( \mathcal {Q}_{\tau }\cup \mathcal {T}_{\omega })\) and using the fact that \(S_k\) is sampled uniformly, for a vanishing sequence \(\{r_k\}\) the Lemma 1 implies that there exists a \(k_0\ge 1\) such that for all \(k\ge k_0\),

$$\begin{aligned} P[\{ t_k' > 0\}]&\le \bigcup _{a \in S_k\setminus ( \mathcal {Q}_{\tau }\cup \mathcal {T}_{\omega })} \left( 1-\frac{m(\mathcal {A}\left( a;r_k;n;\beta \right) )}{m(\mathcal {D})} \right) ^{|S_k|-1} \nonumber \\&\le |S_k\setminus ( \mathcal {Q}_{\tau }\cup \mathcal {T}_{\omega })| \left( 1-\frac{m(\mathcal {A}\left( a;r_k;n;\beta \right) )}{m(\mathcal {D})} \right) ^{|S_k|-1} \nonumber \\&\le |S_k| \left( 1-\frac{1}{2} \frac{m(\mathcal {B}\left( a;r_k \right) )}{m(\mathcal {D})} \right) ^{|S_k|-1} , \end{aligned}$$
(31)

where the first inequality bounds the probability that for any sampled point in \(S_k\setminus ( \mathcal {Q}_{\tau }\cup \mathcal {T}_{\omega })\) none of the remaining sampled points are in \(\mathcal {A}\left( a;r_k;n;\beta \right)\) (see (S1) of Table 1). The second inequality follows from Boole’s inequality. The last inequality in (31) is due to Lemma 1 and the fact that \(|S_k\setminus ( \mathcal {Q}_{\tau }\cup \mathcal {T}_{\omega })|< |S_k|\).

Recall that for any \(a\in \mathcal {D}\) and \(r_k\) sufficiently small such that \(\mathcal {B}\left( a;r_k \right) \subseteq \mathcal {D}\), \(m( \mathcal {B}\left( a;r_k \right) ) = r_k^d \frac{\pi ^{d/2} }{ \mathrm {\Gamma }(1+ d/2)}\). Combined with this fact, for any \(\sigma >0\) and choosing a sequence \(r_k = \frac{1}{\sqrt{\pi }} \root d \of {\mathrm {\Gamma }(1+{d/2}) m(\mathcal {D}) \sigma \frac{\log |S_k|}{|S_k|}}\), we have

$$\begin{aligned} P[\{ t_k' > 0\}] \le |S_k| \left( 1- \frac{1}{2} \frac{m(\mathcal {B}\left( a;r_k \right) )}{m(\mathcal {D})} \right) ^{|S_k|-1} = |S_k|\left( 1-\frac{\sigma }{2} \frac{\log |S_k|}{|S_k|} \right) ^{|S_k|-1}. \end{aligned}$$

Since \(|S_k|\rightarrow \infty\) as \(k\rightarrow \infty\), the fact that \(e^{-\frac{\sigma }{2} \frac{\log |S_k|}{|S_k|}}\ge 1-\frac{\sigma }{2} \frac{\log |S_k|}{|S_k|}\) implies

$$\begin{aligned} P[\{ t_k' > 0\}] \le |S_k|\left( e^{-\frac{\sigma }{2} \frac{{(|S_k|-1)} \log |S_k|}{|S_k|}} \right) = |S_k|^{1-\frac{\sigma }{2}\frac{{(|S_k|-1)} }{|S_k|} }= O(|S_k|^{1- \frac{\sigma }{2} }). \end{aligned}$$
(32)

\(\square\)

Shekel with \(d=6\) and \(d=8\)

Figures 5 and 6.

Fig. 5
figure 5

Data profiles for the Shekel-6D function for finding each local minimum. \(\zeta =10^{-4}\) and \(|P|=10\)

Fig. 6
figure 6

Data profiles for the Shekel-8D function for finding each local minimum. \(\zeta =10^{-4}\) and \(|P|=10\)

MANSO with heterogeneous variance

Figures 7, 8, 9, 10 and 11

Fig. 7
figure 7

Data profiles for the Branin–Hoo function for finding each local minimum. \(\zeta =10^{-3}\) and \(|\mathcal {P}|=10\) (top with homogeneous variance (\(=1\)) and bottom with heterogeneous variance (\(=0.005*f(x)\)))

Fig. 8
figure 8

Data profiles for the Shekel-4D function for finding each local minimum. \(\zeta =10^{-4}\) and \(|\mathcal {P}|=10\) (top with homogeneous variance (\(=1\)) and bottom with heterogeneous variance (\(=0.05*f(x)\)))

Fig. 9
figure 9

Data profiles for the Shekel-6D function for finding each local minimum. \(\zeta =10^{-4}\) and \(|P|=10\) with heterogeneous variance (\(=0.05*f(x)\)))

Fig. 10
figure 10

Data profiles for the Shekel-8D function for finding each local minimum. \(\zeta =10^{-4}\) and \(|P|=10\) with heterogeneous variance (\(=0.05*f(x)\)))

Fig. 11
figure 11

Data profiles for the Shekel-10D function for finding each local minimum. \(\zeta =10^{-4}\) and \(|\mathcal {P}|=10\) with heterogeneous variance (\(=0.05*f(x)\)))

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, P., Larson, J. Multistart algorithm for identifying all optima of nonconvex stochastic functions. Optim Lett 18, 1335–1360 (2024). https://doi.org/10.1007/s11590-024-02114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-024-02114-z

Keywords

Navigation