[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The multilevel facility location and pricing problems: the computational complexity and the stability analysis

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider Stackelberg games and corresponding bilevel and trilevel programming models based on facility location and pricing processes. At the upper level of the bilevel models, the company decides on the location of its uncapacitated facilities and the assignment of optimal prices for homogeneous products. In the trilevel models, two companies compete for client demand by making decisions sequentially. We have established the dependence of the computational complexity of the problems under study on the choice of pricing policy and the concept of facility allocation. We have divided the problems into three classes: polynomially solvable, NP-hard, and \(\Sigma ^P_2\)-hard. Moreover, the problems of stability analysis are discussed in conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Verter, V.: Uncapacitated and capacitated facility location problems. In: Eiselt, H., Marianov, V. (eds.) Foundations of Location Analysis. International Series in Operations Research & Management Science, p. 155. Springer, New York (2011)

  2. Marianov, V., Serra, D.: Median problems in networks. In: Eiselt, H., Marianov, V. (eds.) Foundations of Location Analysis. International Series in Operations Research & Management Science, p. 155. Springer, New York (2011)

  3. Talbi, E-G.: Metaheuristics for bi-level optimization. In: Studies in Computational Intelligence, p. 482 (2013)

  4. Dempe, S., Zemkoho, A.: Bilevel optimization: advances and next challenges, Springer Optimization and Its Applications book series (2020)

  5. Mallozzi, L., D’Amato, E., Pardalos, P.: Spatial interaction models. facility location using game theory, Springer Optimization and Its Applications (2017)

  6. Karakitsiou, A.: Modeling discrete competitive facility location. Springer, Cham, Heidelberg (2015)

    Book  MATH  Google Scholar 

  7. Kononov, A.V., Kochetov, Yu.A., Plyasunov, A.V.: Competitive facility location models. Comput. Math. Math. Phys. 49(6), 994–1009 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Vasilyev, I.V., Klimentova, K.B., Boccia, M.: Polyhedral study of simple plant location problem with order. Oper. Res. Lett. 41(2), 153–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caramia, M., Mari, R.: A decomposition approach to solve a bilevel capacitated facility location problem with equity constraints. Optim. Lett. 10, 997–1019 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caramia, M., Giordani, S.: Location of differentiated waste collection centers with user cooperation: a bilevel optimization approach. Optim. Lett. 14, 85–99 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cvokic, A.D., Kochetov, Y.A., Plyasunov, A.V., Savic, A.: A variable neighborhood search algorithm for the (r-p) hub-centroid problem under the price war. J. Glob. Optim. 1–40 (2021)

  12. van Loon, J.: Algorithmic Pricing, Universitaire Pers Maastricht (2009)

  13. Berger, A., Grigoriev, A., Panin, A., Winokurow, A.: Location, pricing and the problem of Apollonius. Optim. Lett. 11, 1797–1805 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Plyasunov, A.V., Panin, A.A.: The pricing problem. Part I: exact and approximate algorithms. Diskretn. Anal. Issled. Oper. 19(5), 83–100 (2012). (In Russian)

    MATH  Google Scholar 

  15. Plyasunov, A.V., Panin, A.A.: The pricing problem. Part I: exact and approximate algorithms. J. Appl. Ind. Math. 7(2), 241–251 (2013)

    Article  MathSciNet  Google Scholar 

  16. Plyasunov, A.V., Panin, A.A.: The pricing problem. Part II: computational complexity. Diskretn. Anal. Issled. Oper. 19(6), 56–71 (2012). (In Russian)

    MATH  Google Scholar 

  17. Plyasunov, A.V., Panin, A.A.: The pricing problem. Part II: computational complexity. J. Appl. Ind. Math. 7(3), 420–430 (2013)

    Article  MathSciNet  Google Scholar 

  18. Plyasunov, A.V., Panin, A.A.: On three-level problem of competitive pricing, in Numerical Computations: theory and Algorithms. IN: Proceedings of 2nd International Conference Pizzo Calabro, Italy, June 19–25), pp. 050006-1–050006-5, AIP Publ., Melville, NY, 2016 (AIP Conf. Proc., Vol. 1776) (2016)

  19. Panin, A.A., Plyasunov, A.V.: On complexity of the bilevel location and pricing problems. J. Appl. Ind. Math. 8, 574–581 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kochetov, Yu.A., Panin, A.A., Plyasunov, A.V.: Comparison of metaheuristics for the bilevel facility location and mill pricing problem. J. Appl. Ind. Math. 9, 392–401 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Diakova, Z., Kochetov, Yu.A.: A double VNS heuristic for the facility location and pricing problem. Electron. Notes Discret. Math. 39(4), 29–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Panin, A.A., Plyasunov, A.V.: Stability analysis for pricing. In: Kochetov, Y., Bykadorov, I., Gruzdeva, T. (eds.) Mathematical Optimization Theory and Operations Research. MOTOR 2020. Communications in Computer and Information Science, vol. 1275. Springer, Cham (2020)

    Google Scholar 

  23. Gubareva, A.V., Panin, A.A., Plyasunov, A.V., Som, L.V.: On a three-level competitive pricing problem with uniform and mill pricing strategies. J. Appl. Ind. Math. 13, 54–64 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Simon, H.: Theories of bounded rationality. In: McGuire, C.B., Radner, R. (eds.) Decision and Organization. North-Holland (1972)

  25. Deng, X., Papadimitriou, C.H.: On the complexity of cooperative solution concepts. Math. Oper. Res. 19(2), 257–266 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Carrizosa, E., Nickel, S.: Robust facility location. Math. Methods Oper. Res. 58(2), 331–349 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Carrizosa, E., Ushakov, A., Vasilyev, I.: Threshold robustness in discrete facility location problems: a bi-objective approach. Optim. Lett. 9(7), 1297–1314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zare, M.H., Prokopyev, O.A., Sauré, D.: On bilevel optimization with inexact follower. Decis. Anal. 17(1), 1–22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smith, J.C., Lim, C., Sudargho, F.: Survivable network design under optimal and heuristic interdiction scenarios. J. Global Optim. 38(2), 181–199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shan, X., Zhuang, J.: Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender attacker game. Eur. J. Oper. Res. 228(1), 262–272 (2013)

    Article  MATH  Google Scholar 

  31. Pardalos, P.M., Rasskazova, V., Vrahatis, M.N.: Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Springer, Optimization and Its Applications (2021)

    Book  MATH  Google Scholar 

  32. Hanjoul, P., Hansen, P., Peeters, D., Thisse, J.-F.: Uncapacitated plant location under alternative spatial price policies. Mark. Sci. 36, 41–57 (1990)

    MathSciNet  MATH  Google Scholar 

  33. Daskin, M.S.: Network and Discrete Location Models, Algorithms, and Applications. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  34. Florensa, C., García-Herreros, P., Misra, P., Arslan, E., Mehta, S., Grossmann, I.E.: Capacity planning with competitive decision-makers: trilevel MILP formulation, degeneracy, and solution approaches. Eur. J. Oper. Res. 262, 449–463 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, San Francisco, Calif.: W. H. Freeman & Co., (1990)

  36. Ausiello, G., Crescenzi, P., Gambosi, G., et al.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer-Verlag, Berlin (1999)

    Book  MATH  Google Scholar 

  37. Jeroslow, R.G.: The polynomial hierarchy and a simple model for competitive analysis. Math. Program. 32(2), 146–164 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Davydov, I., Kochetov, Yu., Plyasunov, A.: On the complexity of the \((r\mid p)\)-centroid problem in the plane. TOP 22(2), 614–623 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gordeev, E.N., Leontev, V.K.: A general approach to the study of the stability of solutions in discrete optimization problems. Zh. Vychisl. Mat. Mat. Fiz. 36(1), 66–72 (1996). (In Russian)

    MathSciNet  Google Scholar 

  40. Gordeev, E.N., Leontev, V.K.: A general approach to the study of the stability of solutions in discrete optimization problems. Comput. Math. Math. Phys. 36(1), 53–58 (1996)

    MathSciNet  Google Scholar 

  41. Leontev, V.K.: Stability of the travelling salesman problem. Comput. Math. Math. Phys. 15(5), 199–213 (1975)

    Article  Google Scholar 

  42. Leontev, V.K., Gordeev, E.N.: Qualitative analysis of trajectory problems. Kibernetika 5, 82–90 (1986)

    Google Scholar 

  43. Leontev, V.K., Gordeev, E.N.: Stability in bottleneck problems. Comput. Math. Math. Phys. 20(4), 275–280 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ben-Tal, A., Nemirovski, A.: Robust optimization: methodology and applications. Math. Program. 92, 453–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Emelichev, V., Podkopaev, D.: Quantitative stability analysis for vector problems of 0–1 programming. Discret. Optim. 7(1–2), 48–63 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kuzmin, K.G.: A united approach to finding the stability radii in a multicriteria problem of a maximum cut. Diskretn. Anal. Issled. Oper. 22(5), 30–51 (2015). (In Russian)

    Google Scholar 

  47. Kuzmin, K.G.: A united approach to finding the stability radii in a multicriteria problem of a maximum cut. J. Appl. Industr. Math. 9(4), 527–539 (2015)

    Article  Google Scholar 

  48. Sotskov, Yu.N., Leontev, V.K., Gordeev, E.N.: Some concepts of stability analysis in combinatorial optimization. Discret. Appl. Math. 58, 169–190 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rossi, A., Gurevsky, E., Battaïa, O., Dolgui, A.: Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations. Discret. Appl. Math. 208, 123–136 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Charitopoulos, V.M., Papageorgiou, L.G., Dua, V.: Multi-parametric mixed integer linear programming under global uncertainty. Comput. Chem. Eng. 116, 279–295 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Grant of the Russian Science Foundation, RSF-ANR 21-41-09017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem A. Panin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panin, A.A., Plyasunov, A.V. The multilevel facility location and pricing problems: the computational complexity and the stability analysis. Optim Lett 17, 1295–1315 (2023). https://doi.org/10.1007/s11590-022-01924-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01924-3

Keywords

Navigation